Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T12:09:56.014Z Has data issue: false hasContentIssue false

Longevity of seeds and soil seed bank of the Cerrado tree Miconia chartacea (Melastomataceae)

Published online by Cambridge University Press:  10 July 2015

Diego F. Escobar E.*
Affiliation:
Departamento de Botânica, Universidade Estadual Paulista (Unesp), Av. 24-A, 1515, Bela Vista, Rio Claro (SP), Brasil
Victor J. M. Cardoso
Affiliation:
Departamento de Botânica, Universidade Estadual Paulista (Unesp), Av. 24-A, 1515, Bela Vista, Rio Claro (SP), Brasil
*
*Correspondence E-mail: barescoesco@gmail.com

Abstract

Miconia chartacea is a widely distributed tree in Brazil, occurring at altitudes ranging from 300 m to 1900 m in the Caatinga, Cerrado and Atlantic Forest biomes. In this work we attempted to classify M. chartacea seeds regarding their behaviour during storage and their germination syndrome and to determine, from a storage test in Cerrado soil and laboratory conditions in situ and ex situ, the longevity of seeds, as well as the capacity of the species to form a soil seed bank. The results suggested that M. chartacea seeds form a transient soil seed bank in the Cerrado and can be classified as orthodox in terms of storage behaviour, although the seeds are dispersed with a relatively high water content. The life span of seeds was favoured in soil-stored seeds in comparison with dry storage at 25°C, whereas storage at low temperatures prevented a decrease of the seed's germinability with storage time (330 d). M. chartacea seeds are dispersed during the dry season and germinate during the next rainy season, which can be classified as an intermediate–dry germination syndrome. Seeds of this species are dispersed in the Cerrado when temperatures and soil moisture are relatively low, which favours the formation of a soil seed bank, considering that the seeds tolerate desiccation and their longevity is favoured by low temperatures. A transient seed bank type is favoured by the loss of viability in storage at warm temperatures linked to the rainy season, and the predictable seasonal variations in climate in the region, with germination being restricted to the beginning of the rainy season.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araujo, C.G. and Cardoso, V.J.M. (2006) Storage in Cerrado soil and germination of Psychotria vellosiana (RUBIACEAE) seeds. Brazilian Journal of Biology 66, 709717.CrossRefGoogle ScholarPubMed
Araujo, C.G. and Cardoso, V.J.M. (2007) Psychotria hoffmansegiana (Willd ex Roem. and Schult.) Mull. Arg. and Palicourea marcagravii St. Hil. (Rubiaceae): potential for forming soil seed banks in a Brazilian Cerrado. Brazilian Journal of Biology 67, 421427.Google Scholar
Baskin, C.C. and Baskin, J.M. (1998) Seeds. Ecology, biogeography, and evolution of dormancy and germination. San Diego, Academic Press.Google Scholar
Bewley, J.D., Bradford, K., Hilhorst, H.W.M. and Nonogaki, H. (2013) Seeds: Physiology of development, germination and dormancy (3rd edition). New York, Springer.CrossRefGoogle Scholar
Brischi, A.M. (2000) Efeito da luz e da temperatura na germinação de sementes de Huberia semiserrata DC. (Melastomataceae). Master's thesis, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil.Google Scholar
Carreira, R.C. (2004) Germinação de sementes de Miconia albicans (Sw.) Triana e M. rubiginosa (Bonpl.) DC., Melastomataceae, do cerrado de Mogi Guaçu, SP. PhD thesis, Instituto de Botânica da Secretaria do Meio Ambiente, São Paulo, Brazil. .Google Scholar
Carreira, R.C. and Zaidan, L.B.P. (2007) Germinação de sementes de espécies de Melastomataceae de Cerrado sob condições controladas de luz e temperatura. Hoehnea 34, 261269.Google Scholar
Castro, R.D., Bradford, K.J. and Hilhorst, H.W.M. (2004) Desenvolvimento de sementes e conteúdo de água. pp. 149162 in Ferreira, A.G.; Borghetti, F. (Eds) Germinação: do Básico ao Aplicado. Porto Alegre, ArtMed.Google Scholar
Cesarino, F. (2002) Bancos de sementes do solo da Reserva Biológica e Estação Experimental de Moji-Guaçu, em área de cerrado no Estado de São Paulo. PhD thesis, Universidade Estadual de Campinas, Campinas, SP, Brazil.Google Scholar
Dalling, J.W. and Hubbell, P. (2002) Seed size, growth rate and gap microsite conditions as determinants of recruitment success for pioneer species. Journal of Ecology 90, 557568.Google Scholar
Dalling, J.W., Hubbell, S.P. and Silvera, K. (1998) Seed dispersal, seedling establishment and gap partitioning among tropical pioneer trees. Journal of Ecology 86, 674689.Google Scholar
Escobar, D.F. (2014) Fisioecologia de sementes de Miconia chartacea (Melastomataceae) ocorrente em uma reserva de cerrado, no município de Corumbataí (SP). MSc thesis, Universidade Estadual Paulista, Rio Claro, Brazil. Google Scholar
Fenner, M. and Thompson, K. (2005) The ecology of seeds. Cambridge, Cambridge University Press.Google Scholar
Ferri, M.G. (1977) Ecologia dos Cerrados. pp. 1536 in IV Simposio Sobre o Cerrado, São Paulo, Brazil. Google Scholar
Filgueiras, T.S. (2002) Herbaceous plant communities. pp. 121139 in Oliveira, P.S.; Marquis, R.J. (Eds) The Cerrados of Brazil: Ecology and natural history of a Neotropical savanna. Washington, DC, Columbia University Press.Google Scholar
Franco, A.C. (2002) Ecophysiology of woody plants. pp. 178197 in Oliveira, P.S.; Marquis, R.J. (Eds) The Cerrados of Brazil: Ecology and natural history of a Neotropical savanna. Washington, DC, Columbia University Press.Google Scholar
Garwood, N.C. (1983) Seed germination in a seasonal tropical forest in Panama: a community study. Ecological Monographs 53, 159181.CrossRefGoogle Scholar
GBIF (Global biodiversity information facility) . (2013) Copenhagen. Available at http://www.gbif.org / (accessed 23 July 2013). Google Scholar
Goldenberg, R. (2010) Miconia chartacea in Lista de Espécies da Flora do Brasil, Jardim Botânico do Rio de Janeiro. Available at http://floradobrasil.jbrj.gov.br/2010/FB009684 (accessed accessed 20 July 2012).Google Scholar
Higuchi, P., Silva, A.C., van den Berg, E. and Pifano, D.S. (2011) Associações espaciais entre indivíduos de diferentes espécies de Miconia spp. RUIZ & PAV. (Melastomataceae). Revista Árvore 35, 381389.Google Scholar
Hong, T.D. and Ellis, R.H. (1996) A protocol to determine seed storage behavior. Technical Bulletin no. 1. Italy, International Plant Genetic Resources Institute.Google Scholar
Jacobi, C.M., Carmo, F.F., Vincent, R.C. and Stehmann, J.R. (2007) Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodiversity Conservation 16, 21852200.Google Scholar
Khurana, E. and Singh, J.S. (2001) Ecology of seed and seedling growth for conservation and restoration of tropical dry forest: a review. Environmental Conservation 28, 3952.Google Scholar
Labouriau, L.G. (1983) A Germinação das Sementes. Washington, DC, Secretaria Geral da Organização dos Estados Americanos.Google Scholar
Machado, R.B., Ramos, N.M.B., Pereira, P.G.P., Caldas, E.F., Gonçalves, D.A., Santos, N.S., Tabor, K. and Steininger, M. (2004) Estimativas de perda de área do Cerrado brasileiro. Brasília, DF, Conservation International.Google Scholar
Mendonça, R.C., Felfili, J.M., Walter, B.M.T., Silva, M.C. Jr, Rezende, A.V., Filgueiras, T.S., Nogueira, P.E. and Fagg, C.W. (2008) Flora vascular do bioma Cerrado: checklist com 12.356 espécies. pp. 4211279 in Sano, S.M.; Almeida, S.P.; Ribeiro, J.F. (Eds) Cerrado: Ecologia e flora. Brasília, Embrapa Cerrados.Google Scholar
Mendoza, H. and Ramírez, B. (2006) Guía ilustrada de géneros Melastomataceae y Memecylaceae de Colombia. Bogotá, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Univerisad del Cauca.Google Scholar
Myers, N., Mittermeier, R.A., Mittermeier, C.G., Fonseca, G.A.B. and Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403, 853858.Google Scholar
Oliveira, P.E. (2008) Fenologia e biologia reprodutiva das espécies de cerrado. pp. 169192 in Sano, S.M.; Almeida, S.P. (Eds) Cerrado: Ambiente e flora. Planaltina, EMBRAPA-CPAC.Google Scholar
Oliveira-Filho, A.T. and Ratter, J.A. (2002) Vegetation physiognomies and woody flora of the cerrado biome. pp. 91120 in Oliveira, P.S.; Marquis, R.J. (Eds) The Cerrados of Brazil: Ecology and natural history of a Neotropical savanna. Washington, DC, Columbia University Press.Google Scholar
Paulino, E.C.B. (2002) Estabelecimento dos indivíduos de Copaifera langsdorffii Desf. sob diferentes intensidades luminosas em uma área de mata nativa e ecofisiologia de sementes considerando o efeito do soterramento e de submersão em água. Master's thesis, Universidade Guarulhos, São Paulo, Brazil. Google Scholar
Pereira-Diniz, S.G. and Ranal, M.A. (2006) Germinable soil seed bank of a gallery forest in Brazilian Cerrado. Plant Ecology 183, 337348.Google Scholar
Pinheiro, M.H.O. (2006) Composição e estrutura de uma comunidade savânica em gradiente topográfico no município de Corumbataí (SP, Brasil). PhD thesis, Universidade Estadual Paulista, Rio Claro, Brazil. Google Scholar
Ratter, J.A., Ribeiro, J.F. and Bridgewater, S. (1997) The Brazilian Cerrado vegetation and threats to its biodiversity. Annals of Botany 80, 223230.Google Scholar
Ray, G.J. and Brown, B.J. (1995) Restoring Caribbean dry forests: evaluation of tree propagation techniques. Restoration Ecology 3, 8694.CrossRefGoogle Scholar
Ribeiro, L.C. (2010) Aspectos ecofisiológicos da germinação de sementes de espécies de cerrado sensu stricto e da mata de galeria da biota Cerrado expostas a diferentes condições de estresse. MSc thesis, Universidade de Brasília, Brasilía, Brazil.Google Scholar
Salazar, A., Goldstein, G., Franco, A.C. and Miralles-Wilhelm, F. (2011) Timing of seed dispersal and dormancy, rather than persistence in soil seed-banks, control recruitment of woody plants in Neotropical savannas. Seed Science Research 21, 103116.Google Scholar
Sassaki, R.M., Rondon, J.N., Zaidan, L.B.P. and Felippe, G.M. (1999) Number of buried seeds and seedlings emergence in cerradao, cerrado and gallery forest soils at Pedregulho, Itirapina (SP), Brazil. Revista Brasileira de Botânica 22, 147152.Google Scholar
Silva, A., Figliolia, M.B., Aguiar, I.B. and Perecin, D. (2001) Liofilização e armazenamento de sementes de ipê-rosa Tabebuia heterophylla (A.P. Cabdolle) Britton (Bignoniaceae). Revista Brasileira de Sementes 23, 252259.Google Scholar
Silva, E.M.N. (1988) Determinação da umidade. pp. 6069 in Pina-Rodrigues, F.C.M. (Coord.) Manual de Análise de Sementes. Campinas, Fundação Cargil.Google Scholar
Silveira, F.A.O., Ribeiro, R.C., Oliveira, D.M.T., Fernandes, G.W. and Lemos-Filho, J.P. (2012) Evolution of physiological dormancy multiple times in Melastomataceae from Neotropical montane vegetation. Seed Science Research 22, 3744.Google Scholar
speciesLink . (2013) Available at http://splink.cria.org.br/index?criaLANG = pt (accessed accessed 23 July 2013).Google Scholar
Thomsen, K.A. (1997) The effects of harvest time and drying on dormancy and storability in beechnuts. pp. 4552 in Ellis, R.H.; Black, M.; Murdoch, A.J.; Hong, T.D. (Eds) Basic and applied aspects of seed biology. Current plant science and biotechnology in agriculture, Vol. 30. Dordrecht, Kluwer Academic Publishers.Google Scholar
Thompson, K. (2000) The functional ecology of soil seed banks. pp. 215236 in Fenner, M. (Ed.) Seeds: The ecology of regeneration in plant communities (2nd edition). Wallingford, CABI.Google Scholar
Thompson, K. and Grime, J.P. (1979) Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. Journal of Ecology 67, 893921.CrossRefGoogle Scholar
Zaia, J.E. and Takaki, M. (1998) Estudo da germinação de sementes de espécies arbóreas pioneiras: Tibouchina pulchra Cogn. e Tibouchina granulosa Cogn. (Melastomataceae). Acta Botanica Brasilica 12, 221229.CrossRefGoogle Scholar