Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T15:13:45.180Z Has data issue: false hasContentIssue false

Organic banana production in Ecuador: Its implications on black Sigatoka development and plant–soil nutritional status

Published online by Cambridge University Press:  04 December 2007

Maria Jimenez*
Affiliation:
Escuela Superior Politécnica del Litoral, Centro de Investigaciones Biotecnológicas del Ecuador, Guayaquil, Ecuador.
Lieselot Van der Veken
Affiliation:
Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Catholic University of Leuven, Leuven, Belgium.
Heleen Neirynck
Affiliation:
Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Catholic University of Leuven, Leuven, Belgium.
Helga Rodríguez
Affiliation:
Escuela Superior Politécnica del Litoral, Centro de Investigaciones Biotecnológicas del Ecuador, Guayaquil, Ecuador.
Omar Ruiz
Affiliation:
Escuela Superior Politécnica del Litoral, Centro de Investigaciones Biotecnológicas del Ecuador, Guayaquil, Ecuador.
Rony Swennen
Affiliation:
Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Catholic University of Leuven, Leuven, Belgium.
*
*Corresponding author: mjimenez@espol.edu.ec

Abstract

Black Sigatoka, caused by the leaf fungus Mycosphaerella fijiensis Morelet, is a major constraint to banana production around the world. In Ecuador, the biggest banana-exporting country in the world, this disease has become increasingly aggressive. This has resulted in more fungicide applications, which have significantly increased costs in production and for the environment. Consequently, many banana growers have shifted to organic production, which produces greater economic returns as a result of higher sale prices. In addition, production costs are lower as no fungicides are applied. These organic bananas receive substantial amounts of organic products. This study describes the black Sigatoka disease and nutrient status in an organic banana plantation and compares it with a conventionally fertilized and fungicide-treated plantation. Black Sigatoka symptoms were evaluated in the vegetative and flowering stages under both production conditions and in vitro conditions. Univariate and multivariate descriptive statistics were used to analyze the parameters. Disease symptoms were more severe in leaves from the organic field than in leaves from the inorganic field, but the nutrient status (soil and foliar) did not differ between the two farms. Banana plants from the organic farm had 12 functional leaves at flowering and eight functional leaves at harvest. Average banana yields were over 40% lower for organic versus inorganic management; however, the average price received for organic bananas was over two times higher. Profit–cost analysis has shown that the organic banana farm was substantially more profitable than the inorganic one during the time period analyzed. These results indicated that bananas can be grown commercially without fungicides, and the lower productivity levels are compensated by higher prices of organic fruits in international markets. In addition, organic production has beneficial impacts on social and environmental issues.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

SICA, Servicio de Información y Censo Agropecuario del Ministerio de Agricultura y Ganadería del Ecuador. 2004. Base de datos del III Censo Nacional Agropecuario. Online documents at SICA. Available at Web site: http://cna.sica.gov.ec/listado.htmGoogle Scholar
Carlier, J., Fouré, E., Gauhl, F., Jones, D., Lepoivre, P., Mourichon, X., Pasberg-Gauhl, C., and Romero, R. 2000. Fungal disease of the foliage. In Jones, D. (ed.) Disease of Banana, Abaca and Ensete. CAB International, Wallingford, UK. p. 3799.Google Scholar
Mourichon, X., Peter, D., and Zapater, M. 1987. Inoculation expérimentale de Mycosphaerella fijiensis Morelet sur de jeunes plantules bananiers issues de culture in vitro. Fruits 42:195198.Google Scholar
Ramsey, M., Daniells, J., and Anderson, V. 1990. Effects of Sigatoka leaf spot (Mycosphaerella musicola Leach) on fruit yields, field ripening and green life of bananas in North Queensland. Scientia Horticulturae 41(4):305313.CrossRefGoogle Scholar
Ploetz, R.C. 2004. Diseases and pests: a review of their importance and management. 1st International Congress on Musa. Harnessing Research to Improve Livelihoods. Abstract Guide, July 2004. INIBAP, Penang, Malaysia. p. 114.Google Scholar
Mobambo, K., Gauhl, F., Vuylsteke, D., Ortiz, R., Pasberg-Gauhl, C., and Swennen, R. 1993. Yield loss in plantain from black Sigatoka leaf spot and field performance of resistant hybrids. Field Crops Research 35:3542.CrossRefGoogle Scholar
Stover, R. 1983. The effect of temperature on ascospore germinative tube growth of Mycospaerella fijiensis var. difformis. Fruits 38:625628.Google Scholar
Fernández, A. 1993. El banano en el Ecuador, cultivo, plagas, enfermedades. Universidad Estatal de Guayaquil, Ecuador. p. 56.Google Scholar
Jiménez, M., Bermeo, J., Jama, M., Pérez, L., Guzmán, M., and Maribona, R. 2004. Sensitivity of Mycosphaerella fijiensis populations from Ecuador to propiconazole and azoxistrobin fungicides. 1st International Congress on Musa. Harnessing Research to Improve Livelihoods. Abstract Guide, 6–9 July 2004. INIBAP, Penang, Malaysia.Google Scholar
10 Holderness, M., Bridge, J., and Gold, C. 2000. Pest management in organic systems. Organic Banana 2000: Towards an Organic Banana Initiative in the Caribbean. IPGRI, INIBAP, CAB International and CTA. p. 133136.Google Scholar
11 Mourichon, X., Carlier, J., and Fouré, E. 1997. Sigatoka leaf spot diseases. Musa disease. Fact Sheet No. 8. INIBAP, Montpellier, France.Google Scholar
12 Gauhl, F. 1994. Epidemiology and Ecology of Black Sigatoka (Mycosphaerella fijiensis Morelet) on Plantain and Banana (Musa spp.) in Costa Rica. INIBAP, Montpellier, France.Google Scholar
13 FAOCLIM. 2001. World-wide Agroclimatic Databases. Available at Web site: www.fao.orgGoogle Scholar
14 Daniells, J., Jenny, C., Karamura, D., and Tomekpe, K. 2001. Musalogue: a catalogue of Musa germplasm. In Arnaud, E. and Sharrock, S. (compil.). Diversity in the Genus Musa. INIBAP, Montpellier, France.Google Scholar
15 Brun, J. 1963. La Cercosporiose du bananier. PhD thesis, d'Etat, Université de Paris.Google Scholar
16 Fouré, E. 1987. Varietal reactions of bananas and plantains to black leaf streak disease. In Persley, G. and De Langhe, E. (eds). Banana and Plantain Breeding Strategies, Proceedings of an International Workshop held in Cairns, QLD Australia, October 1986. ACIAR Proceedings No. 21. ACIAR, Canberra, ACT, Australia. p. 1317.Google Scholar
17 Alvarado, Y., Leiva, M., Dita, M., Acosta, M., Cruz, M., Portal, N., Gómez, R., García, L., Bermúdez, I., and Padrón, J. 2003. Early evaluation of black leaf streak resistance by using mycelial suspensions of Mycosphaerella fijiensis. In Jacome, L., Lepoivre, P., Marin, D., Ortiz, R., Romero, R., and Escalant, J.V. (eds). Mycosphaerella Leaf Spot Diseases of Bananas: Present Status and Outlook, Proceedings of the Workshop on Mycosphaerella Leaf Spot Diseases held in San Jose, Costa Rica, May 2002. INIBAP, Montpellier, France. p. 169175.Google Scholar
18 Fullerton, R. and Olsen, T. 1995. Pathogenic variability in Mycosphaerella fijiensis Morelet, cause of black Sigatoka in banana and plantain. Journal of Crop and Horticultural Science 23:3948.Google Scholar
19 Carlier, J., De Waele, D., and Escalant, J.V. 2002. Global evaluation of Musa germplasm for resistance to Fusarium wilt, Mycosphaerella leaf spot diseases and nematodes. In Vézina, A. and Picq, C. (eds). INIBAP, Technical Guidelines 6. INIBAP, Montpellier, France.Google Scholar
20 Martin-Prével, P. 1992. Banana. In Halliday, D., Trenkel, M., and Wichmann, W. (eds). IFA World Fertilizer Use Manual. IFA, Weinheim, Germany. p. 398408.Google Scholar
21 Lahav, E. and Turner, D.W. 1992. Fertilización de banano para rendimientos altos. Segunda edición. Boletín 7. Instituto de la Potasa y el Fósforo, Quito, Ecuador.Google Scholar
22 Blomme, G., Swennen, R., Tenkouano, A., Ortiz, R., and Vuylsteke, D. 2001. Estimation of root development from shoot treats in plantain and banana (Musa spp). Infomusa 10(1):1517.Google Scholar
23 Jones, J.B. 2001. Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press, Boca de Raton, FL.CrossRefGoogle Scholar
24 Arias, P., Dankers, C., Liu, P., and Pilkauskas, P. 2003. The World Banana Economy 19852002. FAO Commodity Studies 1.Google Scholar
25 National Organic Standards Board. 2004. Compost Tea Task Force Report.Google Scholar
26 Restrepo, J. 2000. Agricultura Orgánica: una teoría y una práctica. Abonos orgánicos fermentados experiencias de agricultores en Centroamérica y Brasil. Cali, Colombia.Google Scholar
27 Stover, R. 1980. Sigatoka leaf spots of banana and plantains. Plant Disease 64:750755.CrossRefGoogle Scholar
28 Lahav, E. 1974. The influence of potassium on the content of macroelements in the banana sucker. Agrochimica 28(1–2 ): 194203.Google Scholar
29 Turner, D.W. and Barkus, B. 1980. Plant growth and dry matter production of the ‘Williams’ banana in relation to supply of potassium, magnesium and manganese in sand culture. Scientia Horticulturae 12:2745.CrossRefGoogle Scholar
30 van der Vorm, P.D.J. and van Diest, A. 1982. Redistribution of nutritive elements in a ‘Gros Michel’ banana plant. Netherlands Journal of Agricultural Science 30:286296.Google Scholar
31 Hedge, D. and Srinivas, K. 1989. Irrigation and nitrogen influences on plant water relations, biomass, and nutrient accumulation and distribution in banana cv. Robusta. Journal of Horticulture Science 64(1):9198.Google Scholar
32 Mobambo, K., Gauhl, F., Pasberg-Gauhland, K., and Zoufa, K. 1996. Season and plant age affect evaluation of plantain for response to black Sigatoka disease. Crop Protection 15:609614.CrossRefGoogle Scholar
33 Zapata, P., Rodríguez, G., Cuesta, T., Armijo, C., Abuchar, D., and Tábora, P. 1999. Feasibility of organic ‘Gros Michel’ banana production in small farming systems. In Rosales, F., Tripon, S., and Cerna, J. (eds). Organic/environmentally Friendly Banana Production. Proceedings of a workshop held at EARTH, Guácimo, Costa Rica, July 1998. INIBAP, Montpellier, France. p. 193199.Google Scholar
34 Romero, R. 1998. Organic fertilizers and their application in banana cropping. In Rosales, F., Tripon, S., and Cerna, J. (eds). Organic/environmentally Friendly Banana Production. Proceedings of a workshop held at EARTH, Guácimo, Costa Rica, July 1998. INIBAP, Montpellier, France. p. 173179.Google Scholar
35 Gunifer, B., Touchton, J., and Johnson, J. 1980. Effects of phosphorus and potassium fertilization on Septoria glume blotch of wheat. Phytopathology 70:11961199.Google Scholar
36 Mobambo, K., Zoufa, K., Gauhl, F., Adeniji, M., and Pasberg-Gauhl, C. 1994. Effect of soil fertility on host response to black leaf streak of plantain (Musa spp., AAB group) under traditional farming systems in southeastern Nigeria. International Journal of Pest Management 40(1):7580.CrossRefGoogle Scholar
37 Lahav, E. and Turner, D.W. 1983. Banana nutrition. Bulletin 7. International Potash Institute, Worblaufen-Bern, Switzerland.Google Scholar
38 Alvarez, C., Ortega, A., Fernández, M., and Borges, A. 2001. Growth, yield and leaf nutrient content of organically grown banana plants in the Canary Islands. Fruits 56:1726.CrossRefGoogle Scholar