Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T12:50:21.619Z Has data issue: false hasContentIssue false

Real exchange rates and real interest rates : a nonlinear perspective

Published online by Cambridge University Press:  17 August 2016

Frédérique Bec
Affiliation:
CREST-ENSAE
Mélika Ben Salem
Affiliation:
OEP, Université de Marne-la-Vallée, France
Ronald MacDonald
Affiliation:
University of Glasgow, Scotland
Get access

Summary

In this paper we use a Threshold AutoRegressive (TAR) model to capture the nonlinear dynamics of monthly real effective exchange rate data for the G7 countries. The novelty of our approach relates to the use of the real interest differential as the switching variable. This choice allows us to consider jointly the nonlinearity and nonstationarity issues using recent advances in asymptotic theory. We find that the null of linearity is easily rejected against the nonlinear model for all currencies considered. Further, for five out of the seven countries, where the null of unit root is rejected, we report evidence of quite rapid mean reversion.

Résumé:

Résumé:

Dans cet article, nous retenons un modèle auto-régressif à seuils de type TAR afin de capturer la dynamique non linéaire des taux de change réels effectifs des pays du G7. L'originalité de notre approche provient de l'utilisation du différentiel de taux d'intérêt réel comme variable de transition entre les régimes. Ce choix nous permet de considérer les hypothèses de non-linéarité et de non-stationarité conjointement, en exploitant les avancées récentes de la théorie économétrique. L'hypothèse nulle de linéarité est fortement rejetée en faveur du modèle à seuils pour toutes les devises étudiées. De plus, pour cinq des sept pays considérés, l'hypothèse de racine unitaire est aussi rejetée et les demi-vies du taux de change réel sont inférieures à un an et demi.

Type
Research Article
Copyright
Copyright © Université catholique de Louvain, Institut de recherches économiques et sociales 2006 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

We wish to thank, with usual disclaimers, two anonymous referees for very useful comments on a previous version of this work. Frédérique Bee is grateful to the funding by Danish Social Sciences Research Council (2114-04-0001).

**

CREST-ENSAE, 3 avenue Pierre Larousse, 92245 Malakoff Cedex, France. Email: bec@ensae.fr

References

Alexius, A. (2005), “Productivity shocks and real exchange rates”, Journal of Monetary Economics, 52, pp. 555566.Google Scholar
Andrews, D. (1991), “Heteroskedasticity and autocorrelation consistent co-variance matrix estimation”, Econornetrica, 59, pp. 817858.Google Scholar
Bec, F., Ben Salem, M. and Rahbek, A. (2004), “Nonlinear adjustment towards the Purchasing Power Parity relation : a multivariate approach” , Manuscript, CREST, Paris.Google Scholar
Bergman, U. and Hansson, J. (2005), “Real exchange rates and switching regimes”, Journal of International Money and Finance, 24, pp. 121138.Google Scholar
Berka, M. (2004), “General equilibrium model of arbitrage trade and real exchange rate persistence”, Manuscript, University of British Columbia, Vancouver.Google Scholar
Bessec, M. (2002), “Mean reversion versus adjustment to PPP : the two regimes of exchange rates dynamics under the EMS, 1979–1998”, Economic Modelling, 20, pp. 141164.Google Scholar
Caner, M. and Hansen, B. (2001), “Threshold autoregression with a unit root”, Econornetrica, 69, pp. 15551596.Google Scholar
Coughlin, C. and Koedijk, K. (1990), “What do we know about the long-run real exchange rate?”, St. Louis Federal Reserve Bank Review, 72, pp. 3648.Google Scholar
Dickey, D. and Fuller, W. (1981), “Likelihood ratio statistics for autoregressive time series with an unit root”, Econornetrica, 49, pp. 10571072.Google Scholar
Doue, R., Guillin, A. and Moulines, E. (2004), “Limit theorems for subgeo-metric Markov chains”, Manuscript, École Polythechnique, Palaiseau.Google Scholar
Dumas, B. (1992), “Dynamic equilibrium and the real exchange rate ire a spatially separated world”, Review of Financial Studies, 5, pp. 153180.Google Scholar
Edison, H. and Pauls, B. (1993), “A re-assessment of the relationship between real exchange rates and real interest rates : 1974’90”, Journal of Monetary Economics, 31, pp. 165187.Google Scholar
Edison, H. and Melick, W. (1999), “Alternative approaches to real exchange rates and real interest rates : three up and three down”, International Journal of Finance and Economics, 4, pp. 93111.Google Scholar
Enders, W. and Granger, C. (1998), “Unit-root tests and asymmetric adjustment with an example using the term structure of interest rates”, Journal of Business and Economic Statistics, 16, pp. 304311.Google Scholar
Froot, K. and Rogoff, K. (1995), “Perspectives on PPP and long-run real exchange rates”, in Grossman, G. and Rogoff, K. (eds.), Handbook of International Economics vol.3, Amsterdam, Elsevier/North-Holland, pp. 16471688.Google Scholar
Gagnon, J. (1996), “Net foreign assets and equilibrium exchange rates : panel evidence”, International Finance Discussion Paper n° 574, Board of Governors of the Federal Reserve System, Washington.Google Scholar
Gonzalez, M. and Gonzalo, J. (1998), “Threshold unit root models”, Manuscript, University Carlos III, Madrid.Google Scholar
Gottschalk, J. (2001), “Measuring expected inflation and the ex-ante real interest rate in the Euro area using structural VARs”, Working Paper n° 1067, Kiel Institute of World Economics, Kiel.Google Scholar
Granger, C. and Terasvirta, T. (1993), Modelling non-linear economic relationships, Oxford, Oxford University Press.Google Scholar
Haggan, V. and Ozaki, T. (1981), “Modelling nonlinear random vibrations using an amplitude-dependent autoregressive time series model”, Bio-metrika, 68, pp. 189196.Google Scholar
Henry, O. and Olekalns, N. (2002), “Does the Australian dollar real exchange rate display mean reversion ?”, Journal of International Money and Finance, 21, pp. 651–66.Google Scholar
Kilian, L. and Taylor, M. (2003), “Why is it so difficult to beat the random walk forecast of exchange rates ?”, Journal of International Economics, 60, pp. 85107.Google Scholar
Krugman, P., (1989), Exchange rate instability, Cambridge MA, MIT Press.Google Scholar
Krugman, P. (1991), “Target zones and exchange rate dynamics”, Quarterly Journal of Economics, 106, pp. 669682.Google Scholar
Kwiatkowski, D.P. Phillips, P. Schmidt, and Shin, Y., (1992), “Testing the null hypothesis of stationarity against the alternative of a unit root. How sure are we that economic time series have a unit root ?”, Journal of Econometrics, 54, pp. 159178.Google Scholar
MacDonald, R. (1995), “Long-run exchange rate modeling:A survey of the recent evidence”, International Monetary Fund Staff Papers, 42, pp. 437489.Google Scholar
MacDonald, R. (1999), “What do we really know about real exchange rates?”, in MacDonald, R. and Stein, J. (eds), Equilibrium exchange rates, Amsterdam, Kluwer.Google Scholar
MacKinnon, J. and White, H. (1985), “Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties”, Journal of Econometrics, 29, pp. 305325.Google Scholar
Mark, N. (1999), “Fundamentals of the real dollar-pound rate 1871–1994”, in MacDonald, R. and Stein, J. (eds), Equilibrium exchange rates, Amsterdam, Kluwer.Google Scholar
Meese, R. and Rogoff, K. (1988), “Was it real? The exchange rate-interest differential relation over the modern floating-rate period”, The Journal of Finance, 43, pp. 933948.Google Scholar
Michael, P., Nobay, A. and Peel, D. (1997), “Transactions costs and nonlinear adjustment in real exchange rates : an empirical investigation”, Journal of Political Economy, 105, pp. 862879.Google Scholar
Obstfeld, M. and Taylor, A. (1997), “Nonlinear aspects of goods-market arbitrage and adjustment : Heckscher’s commodity points revisited, Journal of the Japanese and International Economies, 11, pp. 441479.Google Scholar
Officer, L. (1976), “The purchasing power parity theory of exchange rates : a review article”, IMF Staff Papers, 23, pp. 160.Google Scholar
Phillips, P. and Perron, P. (1988), “Testing for unit root in time series regression”, Biometrika, 75, pp. 335346.Google Scholar
Pippenger, M. and Goering , G. (2000), “Additional results on the power of unit root and cointegration tests under threshold process”, Applied Economics Letters, 7, pp. 641644.Google Scholar
Rogoff, K. (1996), “The purchasing power parity puzzle”, Journal of Economic Literature, 34, pp. 647668.Google Scholar
Schnatz, B., Vijselaar, F. and Osbat, C. (2004), “Productivity and the (‘synthetic’) Euro-dollar exchange rate”, Review of World Economics, 140, pp. 130.Google Scholar
Sercu, P., Uppal, R. and Van Hulle, C. (1995), “The exchange rate in the presence of transaction costs : implications for tests of purchasing power parity”, The Journal of Finance, 50, pp. 13091319.Google Scholar
Shin, D. and Lee, O. (2001), “Tests for asymmetry in possibly nonstationary time series data”, Journal of Business and Economic Statistics, 19, pp. 233244.Google Scholar
St-Amant, P. (1996), “Decomposing U.S. nominal interest rates into expected inflation and ex ante real interest rates using structural VAR methodology”, Working Paper n° 96–2, Bank of Canada, Ottawa.Google Scholar
Taylor, A. (2001), “Potential pitfalls for the PPP puzzle ? Sampling and specification biases in mean-reversion tests of the LOOP”, Econornetrica, 69, pp. 473498.Google Scholar
Throop, A. (1994), “A generalised uncovered interest rate parity model of real exchange rates”, Manuscript, Federal Reserve Bank of San Fransisco, San Fransisco.Google Scholar
Tsay, R. (1998), “Testing and modeling multivariate threshold models”, Journal of the American Statistical Association, 93, pp. 11881202.Google Scholar
Uppal, R. (1993), “A general equilibrium model of international portfolio choice”, The Journal of Finance, 48, pp. 529553.Google Scholar