Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T02:56:19.295Z Has data issue: false hasContentIssue false

Paleoclimatic Implications of Radiocarbon Dating Of Speleothems from the Cracow-Wieluń Upland, Southern Poland

Published online by Cambridge University Press:  18 July 2016

Anna Pazdur
Affiliation:
Radiocarbon Laboratory, Silesian Technical University, Gliwice, Krzywoustego 2, PL-44-100 Gliwice, Poland
Mieczysław F. Pazdur
Affiliation:
Radiocarbon Laboratory, Silesian Technical University, Gliwice, Krzywoustego 2, PL-44-100 Gliwice, Poland
Jacek Pawlyta
Affiliation:
Radiocarbon Laboratory, Silesian Technical University, Gliwice, Krzywoustego 2, PL-44-100 Gliwice, Poland
Andrzej Górny
Affiliation:
Geological Museum, Academy of Mining and Metallurgy, Mickiewicza 30, PL-30-059 Cracow, Poland
Michał Olszewski
Affiliation:
Geological Museum, Academy of Mining and Metallurgy, Mickiewicza 30, PL-30-059 Cracow, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report preliminary results of a long-term systematic study intended to gather paleoclimatic records from precisely dated speleothems. The research project is limited to speleothems deposited in caves of the Cracow-Wieluń Upland, the largest and best-explored karst region in Poland, covering ca. 2900 km2 with >1000 caves. Speleothem samples were selected from collections of the Geological Museum of the Academy of Mining and Metallurgy in Cracow. Radiocarbon dates of these samples from ca. 45–20 ka bp almost exactly coincide with age range of the Interplenivistulian. A break in speleothem formation between ca. 20 and 10 ka bp may be interpreted as a result of serious climatic deterioration associated with the maximum extent of the last glaciation. We observed differences among 14C, U/Th and AAR dating results. Changes of δ13C and δ18O in speleothems that grew between ca. 30 and 20 ka bp may be interpreted as changes of paleoclimatic conditions.

Type
I. 14C in the Reconstruction of Past Environments
Copyright
Copyright © the Department of Geosciences, The University of Arizona 

References

Baker, A., Smart, P. L. and Ford, D. C. 1993 Northwest European paleoclimate as indicated by growth frequency variations of secondary calcite deposits. Palaeogeography, Palaeoclimatology, Palaeoecology 100: 291301.CrossRefGoogle Scholar
Chen, Y. and Polach, H. 1986 Validity of 14C ages of carbonates in sediments. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 464472.CrossRefGoogle Scholar
Dorale, J. A., Gonzales, L. A., Reagan, M. K., Pickett, D. A., Murell, M. T. and Baker, R. G. 1992 A high-resolution record of Holocene climate change in speleothem calcite from Cold Water Cave, northeast Iowa. Science 258: 16261630.Google Scholar
Dreybrodt, W. 1988 Processes in Karst System: Physics, Chemistry and Geology. Berlin, Springer-Verlag: 288 p.Google Scholar
Duliński, M. and Różański, K. 1990 Formation of 13C/12C ratios in speleothems: A semi-dynamic model. Radiocarbon 32(1): 716.CrossRefGoogle Scholar
Fontes, J. C., Andrews, J. N., Causse, C. and Gibert, E. 1992 A comparison of radiocarbon and U/Th ages on continental carbonates. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 602610.Google Scholar
Gascoyne, M. 1992 Palaeoclimate determination from cave calcite deposits. Quaternary Sciences Reviews 11: 609–63Google Scholar
Geyh, M. A. 1970 Zeitliche Abgrenzung von Klimaanderungen mit C-14 Daten von Kalksinter und organischen Substanzen. Geologisches Jahrbuch 98: 1522.Google Scholar
Geyh, M. A. and Hennig, G. J. 1986 Multiple dating of a long flowstone profile. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 503509.CrossRefGoogle Scholar
Geyh, M. A. and Schleicher, H. 1990 Absolute Age Determination: Physical and Chemical Dating Methods and Their Application. Berlin-Heidelberg, Springer-Verlag: 503 p.Google Scholar
Guiot, J., Pons, A., Beaulieu, J. L. and Reille, M. 1989 A 140,000 year continental climate reconstruction from two European pollen records. Nature 338: 309313.Google Scholar
Harmon, R. S., Thompson, P., Schwarcz, H. P. and Ford, D. C. 1978 Late Pleistocene paleoclimates of North America as inferred from stable isotope studies of speleothems. Quaternary Research 9: 5470.Google Scholar
Hennig, G. J., Grim, R. and Brunnacker, K. 1983 Speleothems, travertines and paleoclimates. Quaternary Research 20: 129.Google Scholar
Kozarski, S. 1980 An outline of Vistulian stratigraphy and chronology of the Great Poland Lowland. Quaternary Studies in Poland 2: 2135.Google Scholar
Madeyska, T. 1982 The stratigraphy of Palaeolithic sites of the Cracow Upland. Acta Geologica Polonica 32: 227242.Google Scholar
Martinson, D. G., Pisias, N. G., Hays, J. D., Imbrie, J., Moore, T. C. and Shackleton, J. 1987 Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000 year chronostratigraphy. Quaternary Research 27: 129.Google Scholar
Mojski, J. E. 1992 Vistulian stratigraphy and TL dates in Poland. In Robertson, A. M., Ringberg, B., Miller, U. and Brunnberg, L., eds., Quaternary Stratigraphy, Glacial Morphology and Environmental Changes. Uppsala, Geological Survey of Sweden: 195200.Google Scholar
Pazdur, A. and Pazdur, M. F. 1986 The measuring equip ment of the Gliwice Radiocarbon Laboratory. Zeszyty Naukowe Politechniki šląskiej, Seria Matematyka-Fizyka, Z. 46, Geochronometria 1: 5569 (in Polish).Google Scholar
Pazdur, A., Pazdur, M. F., Hercman, H., Górny, A. and Olszewski, M. 1994 Preliminary results of the studies on the chronology of speleothem deposition in selected caves of the Cracow-Wieluń Upland. Zeszyty Naukowe Politechniki šląskiej, Seria Matematyka-Fizyka, Z. 71, Geochronometria 10: 6179 (in Polish).Google Scholar
Shackleton, N. J. 1969 The last interglacial in the marine and terrestrial records. Philosophical Transactions of the Royal Society, Series B 174: 135154.Google Scholar
Smart, P. L. and Richards, D. 1992 Age estimates for the late Quaternary sea-stands. Quaternary Sciences Reviews 11: 687696.CrossRefGoogle Scholar
Srdoč, D., Horvatinčić, N., Obelić, B., Krajcar-Bronić, I. and O'Malley, P. 1986 The effects of contamination of calcareous sediments on their radiocarbon ages. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28 (2A): 510514.Google Scholar
Srdoč, D., Horvatinčić, N., Obelić, B. and Sliepčević, A. 1983 Radiocarbon dating of tufa in paleoclimatic studies. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 11th International 14C Conference. Radiocarbon 25(2): 421427.Google Scholar
Stuiver, M. and Polach, H. 1977 Discussion: Reporting of 14C data. Radiocarbon 19(3): 355363.Google Scholar
Starkel, L. 1980 Stratigraphy and chronology of the Vistulian in the Polish Carpathians and in the Subcarpathian Basins. Quaternary Studies in Poland 2: 121135.Google Scholar
Starkel, L. 1988 Remarks on the Quaternary stratigraphy of the Polish Carpatians and their foreland. Quaternary Studies in Poland 8: 4959.Google Scholar
Szelerewicz, M. and Górny, A. 1986 Caves of the Cracow-Wieluń Upland. Warsaw and Cracow, PTTK Kraj (in Polish).Google Scholar
Wiśniewski, W. W. 1989 Polish caves in numbers. Ek-splorancik 1–3: 912 (in Polish).Google Scholar
Yates, T. 1986 Studies of non-marine mollusks for the selection of shell samples for radiocarbon dating. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28 (2A): 457463.Google Scholar