Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T02:53:40.907Z Has data issue: false hasContentIssue false

Paired 14C and 230Th/U Dating of Surface Corals from the Marquesas and Vanuatu (Sub-Equatorial Pacific) in the 3000 to 15,000 Cal Yr Interval

Published online by Cambridge University Press:  18 July 2016

Martine Paterne*
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, Domaine du CNRS, Avenue de la Terrasse, F-91198 Gif sur Yvette, France
Linda K Ayliffe
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, Domaine du CNRS, Avenue de la Terrasse, F-91198 Gif sur Yvette, France
Maurice Arnold
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, Domaine du CNRS, Avenue de la Terrasse, F-91198 Gif sur Yvette, France Unité Mixte de Service UMS 2572, CEA Saclay, F-91198 Gif sur Yvette, France
Guy Cabioch
Affiliation:
IRD (Institut de Recherche pour le Développement), B.P. A5, 98848 Nouméa cedex, New Caledonia
Nadine Tisnérat-Laborde
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, Domaine du CNRS, Avenue de la Terrasse, F-91198 Gif sur Yvette, France
Christine Hatté
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, Domaine du CNRS, Avenue de la Terrasse, F-91198 Gif sur Yvette, France
Eric Douville
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, Domaine du CNRS, Avenue de la Terrasse, F-91198 Gif sur Yvette, France
Edouard Bard
Affiliation:
CEREGE, Université d'Aix-Marseille III, CNRS UMR-6635, Europôle de l'Arbois, BP80, 13545 Aix-en-Provence cdx4, France
*
Corresponding author. Email: Martine.Paterne@lsce.cnrs-gif.fr.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Paired radiocarbon and 230Th/U dating was performed on 13 surface corals from submerged reefs in the Marquesas and from raised terraces in Vanuatu. The absolute ages of the corals analyzed ranged from 3000 to 15,000 cal yr. Estimates of the difference between the absolute and 14C ages of these corals are in agreement with previous determinations up until 11,500 cal yr. The resulting mean sea surface reservoir age R is determined at 390 ± 60 yr for the Marquesas region (9°S), which is slightly higher than the R value at 280 ± 50 yr for the Tahiti Islands (18°S). Multiple 14C analyses of 2 corals from the Marquesas present scattered 14C ages at ~12,000 and ~15,100 cal yr. This could be attributed to rapid changes of the 14C content of surface waters around the Marquesas Islands or to a subtle submarine diagenesis.

Type
Part II
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Arnold, M, Bard, E, Maurice, P, Duplessy, JC. 1987. C-14 dating with the Gif sur Yvette Tandetron accelerator: status report. Nuclear Instruments and Methods in Physics Research B 29:120–3.CrossRefGoogle Scholar
Arnold, M, Bard, E, Maurice, P, Valladas, H, Duplessy, JC. 1989. 14C dating with the Gif-sur-Yvette Tandetron accelerator: status report and study of isotopic fractionation in the sputter ion source. Radiocarbon 31(3): 284–91.Google Scholar
Bard, E. 1988. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications. Paleoceanography 3: 635–45.Google Scholar
Bard, E, Arnold, M, Fairbanks, RG, Hamelin, B. 1990a. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345:405–10.Google Scholar
Bard, E, Hamelin, B, Fairbanks, RG, Zindler, A, Arnold, M, Mathieu, G. 1990b. U/Th and 14C ages of corals from Barbados and their use for calibrating the 14C timescale beyond 9000 years BP. Nuclear Instruments and Methods in Physics Research B 52:461–8.CrossRefGoogle Scholar
Bard, E, Arnold, M, Fairbanks, RG, Hamelin, B. 1993. 230Th-234U and 14C ages obtained by mass spectrometry on corals. Radiocarbon 35(1):191–9.Google Scholar
Bard, E, Arnold, M, Mangerud, J, Paterne, M, Labeyrie, L, Duprat, J, Mélières, M, Sonstegaard, E, Duplessy, JC. 1994. The North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event. Earth and Planetary Science Letters 126:275–87.CrossRefGoogle Scholar
Bard, E, Arnold, M, Hamelin, B, Tisnerat-Laborde, N, Cabioch, G. 1998. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40:1085–92.CrossRefGoogle Scholar
Bar-Matthews, M, Wasserburg, GJ, Chen, JH. 1993. Diagenesis of fossil coral skeletons: correlation between trace elements, textures and 234U/238U. Geochemica et Cosmochimica Acta 57:257–76.Google Scholar
Beck, JW, Richards, DA, Edwards, RL, Silverman, BW, Smart, PL, Donahue, DJ, Hererra-Osterheld, S, Burr, GS, Calsoyas, L, Jull, AJT, Biddulph, D. 2001. Extremely large variations of atmospheric 14C concentration during the Last Glacial period. Science 292:2453–7.Google Scholar
Burr, GS, Edwards, RL, Donahue, DJ, Druffel, ERM, Taylor, FW. 1992. Mass spectrometric 14C and U-Th measurements in coral. Radiocarbon 34(3):611–8.Google Scholar
Burr, GS, Beck, WJ, Taylor, FW, Recy, J, Edwards, LR, Cabioch, G, Corrège, T, Donahue, DJ, O'Malley, JM. 1998. A high-resolution radiocarbon calibration between 11,700 and 12,400 calendar years BP derived from 230Th ages of corals from Espiritu Santo island, Vanuatu. Radiocarbon 40(3):10931105.Google Scholar
Cabioch, G, Ayliffe, LK. 2001. Raised coral terraces at Malakula, Vanuatu, southwest Pacific, indicate high sea level during marine isotope stage 3. Quaternary Research 56:357–65.Google Scholar
Druffel, ERM, Griffin, S. 1993. Large variations of surface ocean radiocarbon: evidence of circulation changes in the southwestern Pacific. Journal of Geophysical Research 98:20,24959.CrossRefGoogle Scholar
Edwards, RL, Beck, JW, Burr, GS, Donahue, DJ, Chappell, JMA, Bloom, AL, Druffel, ERM, Taylor, FW. 1993. A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260:962–8.Google Scholar
Enmar, R, Stein, M, Bar-Matthews, M, Sass, E, Katz, A, Lazar, B. 2000. Diagenesis in live corals from the Gulf of Aqaba. I. The effect on paleo-oceanography tracers. Geochimica et Cosmochimica Acta 64:3123–32.CrossRefGoogle Scholar
Franck, N, Paterne, M, Ayliffe, L, van Weering, T, Henriet, JP, Blamart, D. 2004. Eastern North Atlantic deep-sea corals: tracing upper intermediate water Δ14C during the Holocene. Earth and Planetary Science Letters 219:297309.Google Scholar
Goslar, T, Arnold, M, Tisnérat-Laborde, N, Hatté, C, Paterne, M, Ralska-Jasiewiczona, M. 2000. Radiocarbon calibration by means of varves versus 14C ages of terrestrial macrofossils from Lake Gościąż and Lake Perespilno, Poland. Radiocarbon 42(3):335–48.Google Scholar
Guilderson, TP, Schrag, DP. 1998. Abrupt shift in subsurface temperatures in the tropical Pacific associated with changes in El Niño. Science 281:240–3.Google Scholar
Henderson, GM, Slowey, NC, Haddad, GA 1999. Fluid flow through carbonates platforms: constraints from 234U/238U and Cl- in Bahamas pore-waters. Earth and Planetary Science Letters 169:99111.CrossRefGoogle Scholar
Hughen, KA, Overpeck, JT, Lehman, SJ, Kashgarian, M, Southon, J, Peterson, LC, Alley, R, Sigman, DM. 1998. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391:65–8.Google Scholar
Hughen, KA, Overpeck, JT, Lehman, SJ, Kashgarian, M, Southon, J, Peterson, LC. 1998. A new 14C calibration data set for the last deglaciation based on marine varves. Radiocarbon 40(1):483–94.Google Scholar
Kitagawa, H, van der Plicht, J. 1998. Atmospheric radiocarbon calibration to 45,000 yr BP: Late Glacial fluctuations and cosmogenic isotope production. Science 279:1187–90.Google Scholar
Kitagawa, H, van der Plicht, J. 2000. Atmospheric radiocarbon calibration beyond 11,900 cal BP from Lake Suigetsu laminated sediments. Radiocarbon 42(3): 369–80.Google Scholar
Nadeau, MJ, Grootes, PM, Voelker, A, Bruhn, F, Duhr, A, Oriwall, A. 2001. Carbonate 14C background: does it have multiple personalities? Radiocarbon 43(1):169–76.Google Scholar
Priess, K. 1997. La croissance des Porites spp. du groupe lobata-lutea-solida (scléractiniaires massifs) dans le lagon de Mayotte (NO Canal de Mozambique). Etude sclérochronologique [PhD dissertation]. Université de la Méditerranée. 170 p.Google Scholar
Schleicher, M, Grootes, PM, Nadeau, MJ, Schoon, A. 1998. The carbonate 14C background and its components at the Leibniz AMS facility. Radiocarbon 40(1):8593.Google Scholar
Siani, G, Paterne, M, Michel, E, Sulpizio, R, Sbrana, A, Arnod, M, Haddad, G. 2001. Mediterranean sea surface radiocarbon reservoir age changes since the Last Glacial Maximum. Science 294:1917–20.Google Scholar
Sikes, E, Samson, CR, Guilderson, TP, Howard, WR. 2000. Old radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation. Nature 405:555–9.Google Scholar
Stirling, CH, Esat, TM, McCulloch, MT, Lambeck, K. 1995. High-precision U-series dating of corals from Western Australia and implications for the timing and duration of the last Interglacial. Earth and Planetary Science Letters 135:115–30.Google Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, WJ, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.CrossRefGoogle Scholar
Voelker, AHL, Sarnthein, M, Grootes, PM, Erlenkeuser, H, Laj, C, Mazaud, A, Nadeaeu, MJ, Schleicher, M. 1998. Correlation of marine 14C ages from the Nordic Seas with the GISP2 isotope record: implications for 14C calibration beyond 25 ka BP. Radiocarbon 40(1):517–34.Google Scholar
Yokoyama, Y, Esat, TM, Lambeck, K, Fifield, LK. 2000. Last ice age millennial scale climate changes recorded in Huon Peninsula corals. Radiocarbon 42(3):383401.Google Scholar