Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T21:44:09.960Z Has data issue: false hasContentIssue false

IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP

Published online by Cambridge University Press:  09 February 2016

Paula J Reimer*
Affiliation:
14CHRONO Centre for Climate, the Environment and Chronology, School of Gcography, Archaeology and Palaeoecology, Queen's University Belfast BT7 INN, United Kingdom
Edouard Bard
Affiliation:
CEREGE, Aix-Marseille University, CNRS, IRD, Collège de France, Technopole de l'Arbois BP 80, 13545 Aix en Provence Cedex 4, France
Alex Bayliss
Affiliation:
English Heritage, 1 Waterhouse Square, 138-142 Holborn, London EC1N 2ST, United Kingdom
J Warren Beck
Affiliation:
Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
Paul G Blackwell
Affiliation:
School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, United Kingdom
Christopher Bronk Ramsey
Affiliation:
Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, United Kingdom
Caitlin E Buck
Affiliation:
School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, United Kingdom
Hai Cheng
Affiliation:
Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota 55455-0231, USA Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
R Lawrence Edwards
Affiliation:
Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota 55455-0231, USA
Michael Friedrich
Affiliation:
Institute of Botany (210), Hohenheim University, D-70593 Stuttgart, Germany Heidelberger Akademie der Wissenschaften, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
Pieter M Grootes
Affiliation:
Institute for Ecosystem Research, Christian-Albrechts-Universität zu Kiel 24098, Germany
Thomas P Guilderson
Affiliation:
Center for Accelerator Mass Spectrometry L-397, Lawrence Livermore National Laboratory, Livermore, California 94550, USA Ocean Sciences Department, University of California–Santa Cruz, Santa Cruz, California 95064, USA
Haflidi Haflidason
Affiliation:
Department of Earth Science, University of Bergen, N-5007 Bergen, Norway
Irka Hajdas
Affiliation:
Labor für Ionenstrahlphysik, ETH, 8092 Zurich, Switzerland
Christine Hatté
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, UMR8212 CEA-CNRS-UVSQ, Domaine du CNRS, F-91198 Gif-sur-Yvette, France
Timothy J Heaton
Affiliation:
School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, United Kingdom
Dirk L Hoffmann
Affiliation:
Centro Nacional de Investigación sobre la Evolución Humana CENIEH, Burgos 09002, Spain
Alan G Hogg
Affiliation:
Radiocarbon Dating Laboratory, University of Waikato, Private Bag 3105, Hamilton, New Zealand
Konrad A Hughen
Affiliation:
Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
K Felix Kaiser
Affiliation:
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstr. 111, 8903 Birmensdorf, Switzerland Department of Geography, University of Zurich-Irchel, 8057 Zurich, Switzerland
Bernd Kromer
Affiliation:
Heidelberger Akademie der Wissenschaften, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
Sturt W Manning
Affiliation:
Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology, Cornell Tree Ring Laboratory, Cornell University, Ithaca, New York 14853, USA
Mu Niu
Affiliation:
School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, United Kingdom
Ron W Reimer
Affiliation:
14CHRONO Centre for Climate, the Environment and Chronology, School of Gcography, Archaeology and Palaeoecology, Queen's University Belfast BT7 INN, United Kingdom
David A Richards
Affiliation:
School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, United Kingdom
E Marian Scott
Affiliation:
School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, Scotland
John R Southon
Affiliation:
Department of Earth System Science, University of California–Irvine, Irvine, California 92697, USA
Richard A Staff
Affiliation:
Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, United Kingdom
Christian S M Turney
Affiliation:
Climate Change Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
Johannes van der Plicht
Affiliation:
Centrum voor Isotopen Onderzoek, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands Faculty of Archaeology, Leiden University, P.O. Box 9515, 2300 RA Leiden, the Netherlands
*
2Corresponding author. Email: p.j.reimer@qub.ac.uk.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The IntCal09 and Marine09 radiocarbon calibration curves have been revised utilizing newly available and updated data sets from 14C measurements on tree rings, plant macrofossils, speleothems, corals, and foraminifera. The calibration curves were derived from the data using the random walk model (RWM) used to generate IntCal09 and Marine09, which has been revised to account for additional uncertainties and error structures. The new curves were ratified at the 21st International Radiocarbon conference in July 2012 and are available as Supplemental Material at www.radiocarbon.org. The database can be accessed at http://intcal.qub.ac.uk/intcal13/.

Type
Research Article
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Footnotes

Deceased.

IntCal Oversight Committee members.

Guest contributor.

References

Austin, WEN, Hibbert, FD. 2012. Tracing time in the ocean: a brief review of chronological constraints (60–8 kyr) on North Atlantic marine event-based stratigraphies. Quaternary Science Reviews 36:2837.CrossRefGoogle Scholar
Austin, WEN, Telford, RJ, Ninnemann, US, Brown, L, Wilson, LJ, Small, DP, Bryant, CL. 2011. North Atlantic reservoir ages linked to high Younger Dryas atmospheric radiocarbon concentrations. Global and Planetary Change 79(3–4):226–33.CrossRefGoogle Scholar
Bard, E. 1988. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications. Paleoceanography 3(6):635–5.CrossRefGoogle Scholar
Bard, E, Hamelin, B, Fairbanks, RG, Zindler, A. 1990. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345(6274):405–10.CrossRefGoogle Scholar
Bard, E, Arnold, M, Mangerud, J, Paterne, M, Labeyrie, L, Duprat, J, Mélières, MA, S⊘nstegaard, E, Duplessy, J-C. 1994. The North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event. Earth and Planetary Science Letters 126(4):275–87.CrossRefGoogle Scholar
Bard, E, Rostek, F, Turon, J-L, Gendreau, S. 2000. Hydrological impact of Heinrich events in the subtropical northeast Atlantic. Science 289(5483):1321–4.CrossRefGoogle ScholarPubMed
Bard, E, Rostek, F, Ménot-Combes, G. 2004. Radiocarbon calibration beyond 20,000 14C yr B.P. by means of planktonic foraminifera of the Iberian Margin. Quaternary Research 61(2):204–14.CrossRefGoogle Scholar
Bard, E, Ménot, G, Rostek, F, Licari, L, Böning, P, Edwards, RL, Cheng, H, Wang, YJ, Heaton, TJ. 2013. Radiocarbon calibration/comparison records based on marine sediments from the Pakistan and Iberian margins. Radiocarbon 55(4), this issue.CrossRefGoogle Scholar
Beck, JW, Richards, DA, Edwards, RL, Silverman, BW, Smart, PL, Donahue, DJ, Hererra-Osterheld, S, Burr, GS, Calsoyas, L, Jull, AJT, Biddulph, D. 2001. Extremely large variations of atmospheric 14C concentration during the last glacial period. Science 292(5526):2453–8.CrossRefGoogle ScholarPubMed
Björck, S, Koç, N, Skog, G. 2003. Consistently large marine reservoir ages in the Norwegian Sea during the Last Deglaciation. Quaternary Science Reviews 22(5–7):429–35.CrossRefGoogle Scholar
Blackwell, PG, Buck, CE. 2008. Estimating radiocarbon calibration curves. Bayesian Analysis 3(2):225–48.CrossRefGoogle Scholar
Bondevik, S, Mangerud, J, Birks, HH, Gulliksen, S, Reimer, P. 2006. Changes in North Atlantic radiocarbon reservoir ages during the Aller⊘d and Younger Dryas. Science 312(5779):1514–7.CrossRefGoogle Scholar
Bronk Ramsey, C, Staff, RA, Bryant, CL, Brock, F, Kitagawa, H, van der Plicht, J, Schlolaut, G, Marshall, MH, Brauer, A, Lamb, HF, Payne, RL, Tarasov, PE, Haraguchi, T, Gotanda, K, Yonenobu, H, Yokoyama, Y, Tada, R, Nakagawa, T. 2012. A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P. Science 338(6105):370–4.CrossRefGoogle ScholarPubMed
Bronk Ramsey, C, Scott, EM, van der Plicht, J. 2013. Calibration for archaeological and environmental terrestrial samples in the time range 26–50 ka cal BP. Radiocarbon 55(4), this issue.Google Scholar
Butzin, M, Prange, M, Lohmann, G. 2012. Readjustment of glacial radiocarbon chronologies by self-consistent three-dimensional ocean circulation modeling. Earth and Planetary Science Letters 317–318:177–84.CrossRefGoogle Scholar
de Vries, H. 1958. Variation in concentration of radiocarbon with time and location on earth. Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen Series B 61:94102.Google Scholar
Durand, N, Deschamps, P, Bard, E, Hamelin, B, Camoin, G, Thomas, AL, Henderson, GM, Yokoyama, Y, Matsuzaki, H. 2013. Comparison of 14C and U-Th ages in corals from IODP #310 cores offshore Tahiti. Radiocarbon 55(4), this issue.CrossRefGoogle Scholar
Edwards, RL, Cheng, H, Wang, YJ, Yuan, DX, Kelly, MJ, Kong, XG, Wang, XF, Burnett, A, Smith, E. 2013. A refined Hulu and Dongge Cave climate record and the timing of the climate change during the last glacial cycle. Earth and Planetary Science Letters, submitted.Google Scholar
Eiriksson, J, Larsen, G, Knudsen, KL, Heinemeier, J, Simonarson, LA. 2004. Marine reservoir age variability and water mass distribution in the Iceland Sea. Quaternary Science Reviews 23(20-22):2247–68.CrossRefGoogle Scholar
Friedrich, M, Remmele, S, Kromer, B, Hofmann, J, Spurk, M, Kaiser, KF, Orcel, C, Küppers, M. 2004. The 12,460-year Hohenheim oak and pine tree-ring chronology from central Europe—a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46(3):1111–22.CrossRefGoogle Scholar
Heaton, TJ, Blackwell, PG, Buck, CE. 2009. A Bayesian approach to the estimation of radiocarbon calibration curves: the IntCal09 methodology. Radiocarbon 51(4):1151–64.CrossRefGoogle Scholar
Heaton, TJ, Bard, E, Hughen, K. 2013. Elastic tie-pointing—transferring chronologies between records via a Gaussian process. Radiocarbon 55(4), this issue.CrossRefGoogle Scholar
Hoffmann, DL, Beck, JW, Richards, DA, Smart, PL, Singarayer, JS, Ketchmark, T, Hawkesworth, CJ. 2010. Towards radiocarbon calibration beyond 28 ka using speleothems from the Bahamas. Earth and Planetary Science Letters 289(1–2):110.CrossRefGoogle Scholar
Hogg, A, Palmer, J, Boswijk, G, Reimer, P, Brown, D. 2009. Investigating the interhemispheric 14C offset in the 1st millennium AD and assessment of laboratory bias and calibration errors. Radiocarbon 51(4):1177–86.CrossRefGoogle Scholar
Hogg, AG, Hua, Q, Blackwell, PG, Niu, M, Buck, CE, Guilderson, TP, Heaton, TJ, Palmer, JG, Reimer, PJ, Reimer, RW, Turney, CSM, Zimmerman, SRH. 2013a. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55(4), this issue.CrossRefGoogle Scholar
Hogg, A, Turney, C, Palmer, J, Southon, J, Kromer, B, Bronk Ramsey, C, Boswijk, G, Fenwick, P, Noronha, A, Staff, R, Friedrich, M, Reynard, L, Guetter, D, Wacker, L, Jones, R. 2013b. The New Zealand kauri (Agathis australis) research project: a radiocarbon dating intercomparison of Younger Dryas wood and implications for IntCal13. Radiocarbon 55(4), this issue.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Fink, D, Kaiser, KF, Friedrich, M, Kromer, B, Levchenko, VA, Zoppi, U, Smith, AM, Bertuch, F. 2009. Atmospheric 14C variations derived from tree rings during the early Younger Dryas. Quaternary Science Reviews 28(25–26):2982–90.CrossRefGoogle Scholar
Hughen, KA, Baillie, MGL, Bard, E, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, PJ, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1059–86.CrossRefGoogle Scholar
Hughen, K, Southon, J, Lehman, S, Bertrand, C, Turnbull, J. 2006. Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin. Quaternary Science Reviews 25(23–24):3216–27.CrossRefGoogle Scholar
Kitagawa, H, van der Plicht, J. 1998a. Atmospheric radiocarbon calibration to 45,000 yr B.P.: Late Glacial fluctuations and cosmogenic isotope production. Science 279(5354):1187–90.CrossRefGoogle Scholar
Kitagawa, H, van der Plicht, J. 1998b. A 40,000-year varve chronology from Lake Suigetsu, Japan: extension of the 14C calibration curve. Radiocarbon 40(1):505–15.Google Scholar
Kitagawa, H, van der Plicht, J. 2000. Atmospheric radiocarbon calibration beyond 11,900 cal BP from Lake Suigetsu laminated sediments. Radiocarbon 42(3):369–80.CrossRefGoogle Scholar
Kromer, B, Friedrich, M, Hughen, KA, Kaiser, F, Remmele, S, Schaub, M, Talamo, S. 2004. Late Glacial 14C ages from a floating, 1382-ring pine chronology. Radiocarbon 46(3):1203–9.CrossRefGoogle Scholar
Kromer, B, Manning, SW, Friedrich, M, Talamo, S, Trano, N. 2010. 14C calibration in the 2nd and 1st millennia BC—Eastern Mediterranean Radiocarbon Comparison Project (EMRCP). Radiocarbon 52(3):875–86.CrossRefGoogle Scholar
Libby, WF, Anderson, EC, Arnold, JR. 1949. Age determination by radiocarbon content: world-wide assay of natural radiocarbon. Science 109(2827):227–8.CrossRefGoogle ScholarPubMed
Marshall, M, Schlolaut, G, Nakagawa, T, Lamb, H, Brauer, A, Staff, R, Bronk Ramsey, C, Tarasov, P, Gotanda, K, Haraguchi, T, Yokoyama, Y, Yonenobu, H, Tada, R, Suigetsu 2006 Project Members. 2012. A novel approach to varve counting using μXRF and X-radiography in combination with thin-section microscopy, applied to the Late Glacial chronology from Lake Suigetsu, Japan. Quaternary Geochronology 13:7080.CrossRefGoogle Scholar
Mazaud, A, Laj, C, Bard, E, Arnold, M, Tric, E. 1991. Geomagnetic-field control of 14C production over the last 80 ky: implications for the radiocarbon time-scale. Geophysical Research Letters 18(10):1885–8.CrossRefGoogle Scholar
McCormac, FG, Bayliss, A, Brown, DM, Reimer, PJ, Thompson, MM. 2008. Extended radiocarbon calibration in the Anglo-Saxon period, AD 395–485 and AD 735–805. Radiocarbon 50(1):11–7.CrossRefGoogle Scholar
McManus, JF, Francois, R, Gherardi, J-M, Keigwin, LD, Brown-Leger, S. 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428(6985):834–7.CrossRefGoogle ScholarPubMed
Miyake, F, Nagaya, K, Masuda, K, Nakamura, T. 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486(7402):240–2.CrossRefGoogle ScholarPubMed
Muscheler, R, Beer, J, Wagner, G, Laj, C, Kissel, C, Raisbeck, GM, Yiou, F, Kubik, PW. 2004. Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records. Earth and Planetary Science Letters 219(3–4):325–40.CrossRefGoogle Scholar
Muscheler, R, Beer, J, Kubik, PW, Synal, H-A. 2005. Geomagnetic field intensity during the last 60,000 years based on 10Be and 36Cl from the Summit ice cores and 14C. Quaternary Science Reviews 24(16–17):1849–60.CrossRefGoogle Scholar
Muscheler, R, Kromer, B, Björck, S, Svensson, A, Friedrich, M, Kaiser, KF, Southon, J. 2008. Tree rings and ice cores reveal 14C calibration uncertainties during the Younger Dryas. Nature Geoscience 1:263–7.CrossRefGoogle Scholar
Nakagawa, T, Gotanda, K, Haraguchi, T, Danhara, T, Yonenobu, H, Brauer, A, Yokoyama, Y, Tada, R, Takemura, K, Staff, RA, Payne, R, Bronk Ramsey, C, Bryant, C, Brock, F, Schlolaut, G, Marshall, M, Tarasov, P, Lamb, H, Suigetsu 2006 Project Members. 2012. SG06, a perfectly continuous and varved sediment core from Lake Suigetsu, Japan: stratigraphy and potential for improving the radiocarbon calibration model and understanding of late Quaternary climate changes. Quaternary Science Reviews 36:164–76.CrossRefGoogle Scholar
Niu, M, Heaton, TJ, Blackwell, PG, Buck, CE. 2013. The Bayesian approach to radiocarbon calibration curve estimation: the IntCal13, Marine13, and SHCal13 methodologies. Radiocarbon 55(4), this issue.CrossRefGoogle Scholar
Oeschger, H, Siegenthaler, U, Schotterer, U, Gugelmann, A. 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27(2):168–92.Google Scholar
Olsen, J, Rasmussen, TL, Reimer, PJ. 2013. North Atlantic marine radiocarbon reservoir ages through Heinrich event H4: a new method for marine age model construction. In: Austin, WEN, Abbott, P, Davies, S, Pearce, N, Wastegard, S, editors. Marine Tephrochronology. Geological Society of London. Special Publication. In press.Google Scholar
Palmer, J, Lorrey, A, Turney, CSM, Hogg, A, Baillie, M, Fifield, K, Ogden, J. 2006. Extension of New Zealand kauri (Agathis australis) tree-ring chronologies into Oxygen Isotope Stage (OIS) 3. Journal of Quaternary Science 21(7):779–87.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Turney, CSM, van der Plicht, J. 2013. Selection and treatment of data for radiocarbon calibration: an update to the International Calibration (IntCal) criteria. Radiocarbon 55(4), this issue.CrossRefGoogle Scholar
Roth, R, Joos, F. 2013. A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14C and CO2 records: implications of data and model uncertainties. Climate of the Past Discussions 9:1165–235.Google Scholar
Sarnthein, M, Grootes, PM, Kennett, JP, Nadeau, M-J. 2007. 14C reservoir ages show deglacial changes in ocean currents and carbon cycle. In: Schmittner, A, Chiang, JCH, Hemming, SR, editors. Ocean Circulation: Mechanisms and Impacts - Past and Future Changes of Meridional Overturning. Geophysical Monograph 173. Washington, DC: American Geophysical Union, p 175–96.Google Scholar
Sarnthein, M, Schneider, B, Grootes, PM. 2013. Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean. Climate of the Past Discussions 9:925–65.Google Scholar
Schaub, M, Büntgen, U, Kaiser, KF, Kromer, B, Talamo, S, Andersen, KK, Rasmussen, SO. 2008. Lateglacial environmental variability from Swiss tree rings. Quaternary Science Reviews 27(1–2):2941.CrossRefGoogle Scholar
Schlolaut, G, Marshall, MH, Brauer, A, Nakagawa, T, Lamb, HF, Staff, RA, Bronk Ramsey, C, Bryant, CL, Brock, F, Kossler, A, Tarasov, PE, Yokoyama, Y, Tada, R, Haraguchi, T, Suigetsu 2006 Project Members. 2012. An automated method for varve interpolation and its application to the Late Glacial chronology from Lake Suigetsu, Japan. Quaternary Geochronology 13:5269.CrossRefGoogle Scholar
Singarayer, JS, Richards, DA, Ridgwell, A, Valdes, PJ, Austin, WEN, Beck, JW. 2008. An oceanic origin for the increase of atmospheric radiocarbon during the Younger Dryas. Geophysical Research Letters 35: L14707, doi::10.1029/2008GL034074.CrossRefGoogle Scholar
Singer, BS, Guillou, H, Jicha, BR, Laj, C, Kissel, C, Beard, BL, Johnson, CM. 2009. 40Ar/39Ar, K-Ar and 230Th 238U dating of the Laschamp excursion: a radioisotopic tie-point for ice core and climate chronologies. Earth and Planetary Science Letters 286(1–2):80–8.CrossRefGoogle Scholar
Southon, J, Noronha, AL, Cheng, H, Edwards, RL, Wang, Y. 2012. A high-resolution record of atmospheric 14C based on Hulu Cave speleothem H82. Quaternary Science Reviews 33:3241.CrossRefGoogle Scholar
Staff, RA, Bronk Ramsey, C, Nakagawa, T, Suigetsu 2006 Project Members. 2010. A re-analysis of the Lake Suigetsu terrestrial radiocarbon dataset. Nuclear Instruments and Methods in Physics Research B 268(7–8):960–5.CrossRefGoogle Scholar
Staff, RA, Schlolaut, G, Bronk Ramsey, C, Brock, F, Bryant, CL, Kitagawa, H, van der Plicht, J, Marshall, MH, Brauer, A, Lamb, HF, Payne, RL, Tarasov, PE, Haraguchi, T, Gotanda, K, Yonenobu, H, Yokoyama, Y, Nakagawa, T, Suigetsu 2006 Project Members. 2013. Integration of the old and new Lake Suigetsu (Japan) terrestrial radiocarbon calibration data sets. Radiocarbon 55(4), this issue.CrossRefGoogle Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–89.CrossRefGoogle Scholar
Stuiver, M, Suess, HE. 1966. On the relationship between radiocarbon dates and true sample ages. Radiocarbon 8:534–40.CrossRefGoogle Scholar
Svensson, A, Andersen, KK, Bigler, M, Clausen, HB, Dahl-Jensen, D, Davies, SM, Johnsen, SJ, Muscheler, R, Parrenin, F, Rasmussen, SO, Röthlisberger, R, Seierstad, I, Steffensen, JP, Vinther, BM. 2008. A 60 000 year Greenland stratigraphic ice core chronology. Climate of the Past 4:4757.CrossRefGoogle Scholar
Taylor, RE, Southon, J. 2013. Reviewing the Mid-First Millennium BC 14C “warp” using 14C/bristlecone pine data. Nuclear Instruments and Methods in Physics Research B 294:440–3.CrossRefGoogle Scholar
Usoskin, IG, Kromer, B, Ludlow, F, Beer, J, Friedrich, M, Kovaltsov, GA, Solanki, SK, Wacker, L. 2013. The AD775 cosmic event revisited: the Sun is to blame. Astronomy and Astrophysics 552: L3.CrossRefGoogle Scholar
van der Plicht, J, Jansma, E, Kars, H. 1995. The “Amsterdam Castle”: a case study of wiggle matching and the proper calibration curve. Radiocarbon 37(3):965–8.CrossRefGoogle Scholar
van der Plicht, J, Beck, JW, Bard, E, Baillie, MGL, Blackwell, PG, Buck, CE, Friedrich, M, Guilderson, TP, Hughen, KA, Kromer, B, McCormac, FG, Bronk Ramsey, C, Reimer, PJ, Reimer, RW, Remmele, S, Richards, DA, Southon, JR, Stuiver, M, Weyhenmeyer, CE. 2004. NotCal04—comparison/calibration 14C records 26–50 cal kyr BP. Radiocarbon 46(3):1225–38.CrossRefGoogle Scholar
van der Plicht, J, Imamura, M, Sakamoto, M. 2012. Dating of Late Pleistocene tree-ring series from Japan. Radiocarbon 54(3–4):625–33.CrossRefGoogle Scholar
Voelker, AHL, Grootes, PM, Nadeau, M-J, Sarnthein, M. 2000. Radiocarbon levels in the Iceland Sea from 25–53 kyr and their link to the Earth's magnetic field intensity. Radiocarbon 42(3):437–52.CrossRefGoogle Scholar