Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T01:54:13.409Z Has data issue: false hasContentIssue false

PREHISTORIC CHARCOAL GRAFFITI DISCOVERED IN KATEŘINSKÁ CAVE, CZECH REPUBLIC

Published online by Cambridge University Press:  30 March 2021

Martin Golec
Affiliation:
Department of History, Faculty of Arts, Palacký University, Na Hradě 5, Olomouc, 779 00, Czech Republic
Petr Zajicek
Affiliation:
Cave Administration of the Czech Republic, Květnové náměstí 3, Průhonice, 252 43, Czech Republic
Ivo Svetlik
Affiliation:
CRL, Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, Prague, 180 86, Czech Republic
Katerina Pachnerova Brabcova*
Affiliation:
CRL, Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, Prague, 180 86, Czech Republic
Lucie Marikova
Affiliation:
Department of History, Faculty of Arts, Palacký University, Na Hradě 5, Olomouc, 779 00, Czech Republic
Eva Cermakova
Affiliation:
Department of History, Faculty of Arts, Palacký University, Na Hradě 5, Olomouc, 779 00, Czech Republic
Zuzana Aurelia Ovsonkova
Affiliation:
CRL, Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, Prague, 180 86, Czech Republic
*
*Corresponding author. Email: brabcova@ujf.cas.cz.

Abstract

The article reports on a new sampling method and the archaeological context of cave drawings, which include the oldest currently known graffiti in the Czech Republic. Between 2016 and 2020, samples with a small amount of charcoal were taken from drawings found in Kateřinská Cave (Catherine’s Cave) of the Moravian Karst in the Czech Republic. A new gentle method of sampling charcoal from the cave walls was developed for the purpose of radiocarbon (14C) dating cave drawings of unknown age, while preserving the contours of the drawings. 14C analysis has provided data from four periods of prehistory and history: from the Neolithic around 5000 BC, the turn of the Neolithic and Eneolithic around 4300 BC, the Hallstatt Period from 800–450 BC, and also from the Middle Ages (13th century). The radiocarbon dates of the graffiti correspond to the dates of the pottery finds from the entrance portal of Kateřinská Cave, thus validating the dates and the sampling method.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balák, I. 2009. Moravský kras [The Moravian Karst] (K 230 12). In: Hromas J et al, editors. Jeskyně. Chráněná území ČR XIV. Prague. p. 393–510.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Geislerová, K, Seitl, L, Svoboda, J, Svobodová, H. 1986. Záchranný výzkum před Kateřinskou jeskyní [Rescue Research before Kateřinská Cave]. Regionální sborník okresu Blanskó 86: 6473.Google Scholar
Golec, M. 2020. The Phenomenon of Býčí Skála Cave: landscape, cave and mankind. Archaeologica Olomucensia I. Olomouc.Google Scholar
Gupta, SK, Polach, HA. 1985. Radiocarbon dating practises at ANU. Canberra: ANU.Google Scholar
Handlos, P, Svetlik, I, Horáčková, L, Fejgl, M, Kotik, L, Brychova, V, Megisova, N, Marecova, K. 2018. Bomb peak: radiocarbon dating of skeletal remains in routine forensic medical practice. Radiocarbon 60(4):10171028.CrossRefGoogle Scholar
Jull, AJT, Burr, GS, Beck, JW, Hodgins, GWL, Biddulph, DL, Gann, J, Hatheway, AL, Lange, TE, Lifton, NA. 2006. Application of accelerator mass spectrometry to environmental and paleoclimate studies at the University of Arizona. Radioactivity in the Environment 8:323.CrossRefGoogle Scholar
Kunov, A, Arnaudov, V, Molnár, M. 2014. First 14C dating of the bat guano used for the ancient drawings of Magura cave, NW Bulgaria. In: Yanev Y, editor. National conference with international participation “Geosciences 2014”. Sofia: Bulgarian Geological Society. p. 111–112.Google Scholar
Leone, LM. 2009. The phosphenic Deer Cave of Badisco: art and myth of the shadows in depth. In: Anati E, editor. XXIII Valcamonica. Symposium 2009. Making History of Prehistory the Role of Rock Art. Valcamonica. p. 189–198.Google Scholar
Molnár, M, Janovics, R, Major, I, Orsovszki, J, Gönczi, R, Veres, M, Leonard, AG, Castle, SM, Lange, TE, Wacker, L, Hajdas, I, Jull, AJT. 2013a. Status report of the new AMS 14C sample preparation lab of the Hertelendi Laboratory of Environmental Studies (Debrecen, Hungary). Radiocarbon 55(2–3):665676.CrossRefGoogle Scholar
Molnár, M, Rinyu, L, Veres, M, Seiler, M, Wacker, L, Synal, H-A. 2013b. EnvironMICADAS: a mini 14C-AMS with enhanced gas ion source interface in the Hertelendi Laboratory of Environmental Studies (HEKAL), Hungary. Radiocarbon 55(2–3):338344.CrossRefGoogle Scholar
Orsovszki, G, Rinyu, L. 2015. Flame-sealed tube graphitization using zinc as the sole reduction agent: precision improvement of Environ MICADAS 14C measurements on graphite targets. Radiocarbon 57(5):979990.CrossRefGoogle Scholar
Peša, V. 2014. Jeskyně v neolitu a časném eneolitu mezi Předním východem a střední Evropou – chronologie, funkce a symbolika [Caves in the Neolithic and Early Eneolithic between the Near East and Central Europe – Chronology, functions and symbolism]. Acta Musei Moraviae, Scientiae sociales XCIX/2:169–210.Google Scholar
Reimer, P, Austin, W, Bard, E et al. 2020 The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757.CrossRefGoogle Scholar
Rinyu, L, Molnár, M, Major, I, Nagy, T, Veres, M, Kimák, Á, Wacker, L, Synal, H-A. 2013. Optimization of sealed tube graphitization method for environmental 14C studies using MICADAS. Nuclear Instruments and Methods in Physics Research B 294:270275.CrossRefGoogle Scholar
Rinyu, L, Orsovszki, G, Futó, I, Veres, M, Molnár, M. 2015. Application of zinc sealed tube graphitization on sub-milligram samples using Environ MICADAS. Nuclear Instruments and Methods in Physics Research Section B 361:406413.CrossRefGoogle Scholar
Stoev, A, Maglova, P. 2014. Astronomy in the Bulgarian Neolithic. In: Ruggles, CLN, editor. Handbook of Archaeoastronomy and Ethnoastronomy. New York. p. 13771384.Google Scholar
Stuiver, M, Polach, H. 1977. Reporting of 14C data. Radiocarbon 19(3):355363.CrossRefGoogle Scholar
Svoboda, JA, van der Plicht, J, Balák, I. 2005. Býčí skála cave, Czech Republic: radiocarbon dates of rock paintings. International Newsletter on Rock Art (CAR ICOMOS) 43:79.Google Scholar
Svoboda, JA, van der Plicht, J. 2007. Býčí skála and other caves in the Middle Danube region: Dating rock art. XXII Valcamonica Symposium 2007. Rock art in the framework of the cultural heritage of humankind. Capo di Ponto. p. 467–472.Google Scholar
Šefčáková, A. 2017. Praveké kresby v jaskyni Domica [Prehistoric Drawings in Domica Cave]. Zborník slovenského národného múzea CXI – 2017. Archeológia 27:1542.Google Scholar
Šefčáková, A, Levchenko, VA. 2018. Prehistoric charcoal drawings in the caves of the Slovak and Czech Republics. In: Floss H, Pastoors A, editors. Palaeolithic rock and cave art in Central Europe? Rahden/Westf. p. 137–150.Google Scholar
Svetlik, I, Jull, AJT, Molnár, M, Povinec, PP, Kolář, T, Demján, P, Pachnerova Brabcova, K, Brychova, V, Dreslerová, C, Rybníček, M, Simek, P. 2019. The best possible time resolution: how precise could a radiocarbon dating method be? Radiocarbon 61(6):17291740.CrossRefGoogle Scholar