Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T02:00:26.224Z Has data issue: false hasContentIssue false

Late Quaternary Climate and Hydrology of Tropical South America Inferred from an Isotopic and Chemical Model of Lake Titicaca, Bolivia and Peru

Published online by Cambridge University Press:  20 January 2017

Scott L. Cross
Affiliation:
Duke University, Division of Earth and Ocean Sciences, Durham, North Carolina, 27708
Paul A. Baker
Affiliation:
Duke University, Division of Earth and Ocean Sciences, Durham, North Carolina, 27708
Geoffrey O. Seltzer
Affiliation:
Syracuse University, Department of Geology, Syracuse, New York, 13244
Sherilyn C. Fritz
Affiliation:
University of Nebraska, Department of Geosciences, Lincoln, Nebraska, 68588
Robert B. Dunbar
Affiliation:
Stanford University, Department of Geological and Environmental Sciences, Stanford, California, 94305

Abstract

A simple mass balance model provides insight into the hydrologic, isotopic, and chemical responses of Lake Titicaca to past climatic changes. Latest Pleistocene climate of the Altiplano is assumed to have been 20% wetter and 5°C colder than today, based on previous modeling. Our simulation of lacustrine change since 15,000 cal yr B.P. is forced by these modeled climate changes. The latest Pleistocene Lake Titicaca was deep, fresh, and overflowing. The latest Pleistocene riverine discharge from the lake was about 8 times greater than the modern average, sufficient to allow the expansion of the great paleolake Tauca on the central Altiplano. The lake δ18O value averaged about −13‰ SMOW (the modern value is about −4.2‰). The early Holocene decrease in precipitation caused Lake Titicaca to fall below its outlet and contributed to a rapid desiccation of paleolake Tauca. Continued evaporation caused the 100-m drop in lake level, but only a slight (1–2‰) increase (relative to modern) in δ18O of early Holocene lake waters. This Holocene lowstand level of nearly 100 m was most likely produced by a precipitation decrease, relative to modern, of about 40%. The lake was saline as recently as 2000 cal yr B.P. The timing of these hydrologic changes is in general agreement with calculated changes of insolation forcing of the South American summer monsoon.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M.B., Binford, M.W., Brenner, M., and Kelts, K.R. A 3500 14C yr high-resolution record of water-level changes in Lake Titicaca, Bolivia/Peru. Quaternary Research 47, (1997). 169180.CrossRefGoogle Scholar
Baker, P.A., Rigsby, C.A., Bacher, N.P., Dwyer, G.S., Seltzer, G.O., Fritz, S.C., and Lowenstein, T. Late Quaternary paleoclimate of tropical South America: First results from the drill-core record of the Salar de Uyuni, Bolivia. Eos, Transactions of the American Geophysical Union 80, (1999). F531 Google Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., and Broda, J.P. (2001). The history of South American tropical precipitation for the past 25,000 years. Science 291, 640643.Google Scholar
Baucom, P.C., and Rigsby, C.A. (1999). Climate and lake-level history of the northern Altiplano, Bolivia, as recorded in Holocene sediments of the Rı́o Desaguadero. Journal of Sedimentary Research 69, 597611.CrossRefGoogle Scholar
Bills, B.G., de Silva, S.L., Currey, D.R., Emenger, R.S., Lillquist, K.D., Donnellan, A., and Worden, B. (1994). Hydro-isostatic deflection and tilting in the central Andes: Initial results of GPS survey of Lake Minchin shorelines. Geophysical Research Letters 21, 293296.Google Scholar
Binford, M.W., Kolata, A.L., Brenner, M., Janusek, J.W., Seddon, M.T., Abbott, M., and Curtis, J.H. (1997). Climate variation and the rise and fall of an Andean civilization. Quaternary Research 47, 235248.CrossRefGoogle Scholar
Blodgett, T., Lenters, J., and Isacks, B. (1997). Constraints on the origin of paleolake expansions in the central Andes. Earth Interactions 1 Google Scholar
Carmouze, J.-P., Arze, C., and Quintanilla, J. (1977). Hydrochemical regulation of the lake and water chemistry of its inflow rivers. Dejoux, C., and Iltis, A. (1992). Lake Titicaca: A Synthesis of Limnological Analysis. Kluwer Academic, Dordrecht. 98112.Google Scholar
Cross, S.L., Baker, P.A., Seltzer, G.O., Fritz, S.C., and Dunbar, R.B. (2000). A new estimate of the Holocene lowstand level of Lake Titicaca (16°S) and implications for regional paleohydrology. The Holocene 10, 2132.Google Scholar
Dejoux, C., and Iltis, A. (1992). Lake Titicaca: A Synthesis of Limnological Analysis. Kluwer Academic, Dordrecht.Google Scholar
Fontes, J.-Ch., Boulange, B., Carmouze, J.P., and Florkowski, T. (1979). Preliminary oxygen-18 and deuterium study of the dynamics of Lake Titicaca. Isotopes in Lake Studies: Proceedings of an Advisory Group Meeting on the Application of Nuclear Techniques to the Study of Lake Dynamics. Unipub, New York. p. 145–150 Google Scholar
Friedman, G. M., and O'Neil, J. R. Compilation of stable isotope fractionation factors of geochemical interest. in Data of Geochemistry, U.S. Geological Survey Professional Paper 440M. Fleischer., Ed., pp. 112. United States Geological Survey, .Google Scholar
Gat, J.R. (1984). The stable isotope composition of Dead Sea waters. Earth and Planetary Science Letters 71, 361376.CrossRefGoogle Scholar
Gat, J. Stable isotopes of fresh and saline lakes. Lerman, A., Imboden, D., and Gat, J. (1995). Physics and Chemistry of Lakes. Springer-Verlag, New York. 139165.Google Scholar
Grootes, P.M., Stuiver, M., Thompson, L.G., and Mosley-Thompson, E. (1989). Oxygen isotope changes in tropical ice, Quelccaya, Peru. Journal of Geophysical Research 94, 11871194.Google Scholar
Han, Y. (1995). Stella-based Simulation of Oxygen and Carbon Isotopic Behavior of Lake Systems. University of Minnesota, Google Scholar
Hastenrath, S., and Kutzbach, J. (1983). Paleoclimatic estimates from water and energy budgets of East African lakes. Quaternary Research 19, 141153.CrossRefGoogle Scholar
Hastenrath, S., and Kutzbach, J. (1985). Late Pleistocene climate and water budget of the South American Altiplano. Quaternary Research 24, 249256.CrossRefGoogle Scholar
Hostetler, S.W., and Mix, A.C. (1999). Reassessment of ice-age cooling of the tropical ocean and atmosphere. Nature 399, 673676.Google Scholar
Johnson, A.M. The climate of Peru. Schwerdtfeger, W. (1976). Climates of Central and South America. Elsevier, New York. 147218.Google Scholar
Kessler, A. The palaeohydrology of the Late Pleistocene Lake Tauca on the Bolivian Altiplano and recent climatic fluctuations. Vogel, J.C. (1984). Late Cainozoic Palaeoclimates of the Southern Hemisphere. A. A. Balkema, Rotterdam. 115122.Google Scholar
Kirkish, M.H., and Taylor, M.J. (1984). Micrometeorological measurements at Lake Titicaca (Peru-Bolivia). Vehrhandlungen. Internationaler Vereinigung fuer Theoretische und Angewandt e Limnologie 22, 12321236.Google Scholar
Marengo, J., and Hastenrath, S. (1993). Case studies of extreme climatic events in the Amazon Basin. Journal of Climate 6, 617627.2.0.CO;2>CrossRefGoogle Scholar
Martin, L., Bertaux, J., Correge, T., Ledru, M., Mourguiart, P., Sifeddine, A., Soubies, F., Wirrmann, D., Suguio, K., and Turcq, B. (1997). Astronomical forcing of contrasting rainfall changes in tropical South American between 12,400 and 8800 cal yr BP. Quaternary Research 47, 117122.Google Scholar
Merlivat, L., and Jouzel, J. (1979). Global climatic interpretation of the deuterium–oxygen 18 relationship for precipitation. Journal of Geophysical Research 84, 50295033.Google Scholar
Mourguiart, Ph., Argollo, J, Carbonel, P., Correge, T., and Wirrmann, D. (1992). El lago Titicaca durante el Holoceno: Una historia compleja. Argollo, J., and Mourguiart, Ph. (1995). Cambios cuaternarios en America del Sur. ORSTOM, La Paz. 173188.Google Scholar
Pickard, G.L., and Emery, W.J. (1990). Descriptive Physical Oceanography. Pergamon Press, Oxford.Google Scholar
Ratisbona, L.R. (1992). The climate of Brazil. Schwerdtfeger, W. (1976). Climates of Central and South America. Elsevier, New York. 219294.Google Scholar
Ricketts, R.D., and Johnson, T.C. (1996). Climate change in the Turkana basin as deduced from a 4000 year long δ18O record. Earth and Planetary Sciences Letters 142, 717.CrossRefGoogle Scholar
Roche, M.A., Bourges, J., Cortes, J., and Mattos, R. (1988). Climatology and hydrology of the Lake Titicaca basin. Dejoux, C., and Iltis, A. (1992). Lake Titicaca: A Synthesis of Limnological Knowledge. Kluwer Academic, Dordrecht. 6388.Google Scholar
Seltzer, G., Baker, P., Cross, S., Dunbar, R., and Fritz, S. (1998). High-resolution seismic reflection profiles from Lake Titicaca, Peru/Bolivia: Evidence for Holocene aridity in the tropical Andes. Geology 26, 167170.Google Scholar
Seltzer, G.O., Baker, P.A., Fritz, S.C., and Dunbar, R.B. (1999). Late Quaternary lake level variation in the Peruvian–Bolivian Altiplano. Eos, Transactions American Geophysical Union 80, F4 Google Scholar
Seltzer, G.O., Rodbell, D., and Burns, S.J. (2000). Isotopic evidence for late Quaternary climatic change in tropical South America. Geology 28, 3538.Google Scholar
Servant, M., and Fontes, J.-C. (1978). Les lacs quaternaires des hauts plateaux des Andes boliviennes, premieres interpretations paleoclimatiques. Cahiers ORSTOM, Serie Geologie 10, 924.Google Scholar
Servant, M., Fournier, M., Argollo, J., Servant-Vildary, S., Sylvestre, F., Wirrmann, D., and Ybert, J.-P. (1995). La derniere transition glaciaire/interglaciaire des Andes tropicales sud (Bolivie) d'apres l'etude des variations des niveaux lacustres et des fluctuations glaciaires. Comptes rendues de l'Academie des sciences. 320, 729736.Google Scholar
Sylvestre, F., Servant, M., Servant-Vildary, S., Causse, C., Fournier, M., and Ybert, J.-P. (1999). Lake-level chronology on the southern Bolivian Altiplano (18–23°S) during late-glacial time and the early Holocene. Quaternary Research 51, 5466.CrossRefGoogle Scholar
Taborga, J., and Campos, J. (1995). Recursos hydricos en los Andoes: Lago Titicaca. Bulletin del Institute Francaises des etudes Andines 24, 441448.Google Scholar
Thompson, L.G., Davis, M.E., Mosley-Thompson, E., Sowers, T., Henderson, K.A., Zagorodnov, V.S., Lin, P.-N., Mikhalenko, V.N., Campen, R.K., Bolzan, J.F., Cole-Dai, J., and Francou, B. (1998). A 25,000-year tropical climate history from Bolivian ice cores. Science 282, 18581864.CrossRefGoogle ScholarPubMed
Thompson, L.G., Mosley-Thompson, E., Bolzan, J., and Koci, B. (1985). A 1500-year record of tropical precipitation in ice cores from the Quelccaya ice cap, Peru. Science 229, 971973.Google Scholar
Thompson, , Mosley-Thompson, L.G., Davis, M.E., Lin, P.-N., Henderson, K.A., Cole-Dai, J., Bolzan, J.F., and Liu, K.-B. (1995). Late glacial stage and Holocene tropical ice core records from Huascaran, Peru. Science 269, 4650.Google Scholar
Wirrmann, D., and Mourguiart, Ph. (1995). Late Quaternary spatio-temporal variations in the Altiplano of Bolivia and Peru. Quaternary Research 43, 344354.Google Scholar
Wirrmann, D., and Oliveira Almeida, L. (1987). Low Holocene level (7700 to 3650 years ago) of Lake Titicaca (Bolivia). Palaeogeography, Palaeoclimatology, Palaeoecology 59, 315323.CrossRefGoogle Scholar
Wirrmann, D., Mourguiart, Ph., and Oliveira, , Almeida, L. Holocene sedimentology and ostracods distribution in Lake Titicaca—Paleohydrological interpretations. in Quaternary of South America and Antarctic Peninsula, Vol. 6J, . Rabassa., Ed., pp. 89127. A.A. Balkema, Rotterdam.Google Scholar
Wirrmann, D., Ybert, J.-P., and Mourguiart, P. A 20,000 years paleohydrological record from Lake Titicaca. inLake Titicaca: A Synthesis of Limnological Analysis Dejoux, C. and Iltis, A., Eds., pp. 4048. Kluwer Academic, Dordrecht.Google Scholar
Ybert, J.-P. Ancient lake environments deduced from palynological and diatom analyses. in Lake Titicaca: A Synthesis of Limnological Analysis Dejoux, C. and Iltis, A., Eds., pp. 4960. Kluwer Academic, Dordrecht.Google Scholar
Zhou, J., and Lau, K.-M. (1998). Does a monsoon climate exist over South America?. Journal of Climate 11, 10201040.Google Scholar