Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T00:59:40.893Z Has data issue: false hasContentIssue false

Holocene palaeohydrological changes in the northern Mediterranean borderlands as reflected by the lake-level record of lake ledro, northeastern Italy

Published online by Cambridge University Press:  20 January 2017

Michel Magny*
Affiliation:
Laboratoire de Chrono-Environnement, UMR 6249 du CNRS, UFR des Sciences et Techniques, 16 route de Gray, 25 030 Besançon, France
Sébastien Joannin
Affiliation:
Laboratoire de Chrono-Environnement, UMR 6249 du CNRS, UFR des Sciences et Techniques, 16 route de Gray, 25 030 Besançon, France
Didier Galop
Affiliation:
GEODE, UMR 5602 (CNRS), University of Toulouse 2, 5, Allées A. Machado, Allées A. Machado, 31058 Toulouse, France
Boris Vannière
Affiliation:
Laboratoire de Chrono-Environnement, UMR 6249 du CNRS, UFR des Sciences et Techniques, 16 route de Gray, 25 030 Besançon, France
Jean Nicolas Haas
Affiliation:
Department of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
Michele Bassetti
Affiliation:
CORA Ricerche Archeologiche, via Salisburgo 16, I-38100 Trento, Italy
Paolo Bellintani
Affiliation:
Soprintendenza per i Beni Archeologici, Provincia Autonoma di Trento, via Aosta 1, 38100 Trento, Italy
Romana Scandolari
Affiliation:
Museo delle Palafitte del Lago di Ledro, Via Lungolago 1, 38060 Molina di Ledro, Italy
Marc Desmet
Affiliation:
CNRS-UMR 6113, ISTO Orléans/Tours, UFR Sciences & Techniques, Université François Rabelais, Parc de Grandmont, F-37200 Tours, France
*
*Corresponding author. E-mail address:michel.magny@univ-fcomte.fr (M. Magny).

Abstract

A lake-level record of Lake Ledro (northern Italy) spans the entire Holocene with a chronology derived from 51 radiocarbon dates. It is based on a specific sedimentological approach that combines data from five sediment profiles sampled in distinct locations in the littoral zone. On a millennial scale, the lake-level record shows two successive periods from 11,700 to 4500 cal yr BP and from 4500 cal yr BP to the present, characterized by lower and higher average lake levels, respectively. In addition to key seasonal and inter-hemispherical changes in insolation, the major hydrological change around 4500 cal yr BP may be related to a non-linear response of the climate system to orbitally-driven gradual decrease in insolation. The Ledro record questions the notion of an accentuated summer rain regime in the northern Mediterranean borderlands during the boreal insolation maximum. Moreover, the Ledro record highlights that the Holocene was punctuated by successive centennial-scale highstands. Correlations with the Preboreal oscillation and the 8.2 ka event, and comparison with the atmospheric 14C residual record, suggest that short-lived lake-level fluctuations developed at Ledro in response to (1) final steps of the deglaciation in the North Atlantic area and (2) variations in solar activity.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ariztegui, D., Chondrogianni, C., Lami, A., Guilizzoni, P., Lafargue, E., (2001). Lacustrine organic matter and the Holocene paleoenvironmental record of Lake Albano (central Italy). Journal of Paleolimnology. 26, 283292.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A., (1998). Middle to Late Holocene (6500 yr period) paleoclimate in the eastern Mediterranean region from stable isotopic composition of speleothems from Soreq Cave, Israël. Issar, A., Brown, N., Environment and society in times of climate change, Kluwer Academic, Dordrecht, 203214.Google Scholar
Baroni, C., Zanchetta, G., Fallick, A.E., Longinelli, A., (2006). Molluscs stable isotope record of a core from Lake Frassino (northern Italy): hydrological and climatic changes during the last 14 ka. The Holocene. 16, 827837.CrossRefGoogle Scholar
Bellotti, P., Caputo, C., Davoli, L., Evangelista, S., Garzanti, E., Pugliese, F., Valeri, P., (2004). Morpho-sedimentary characteristics and Holocene evolution of the emergent part of the Ombrone River delta (southern Tuscany). Geomorphology. 61, 7190.CrossRefGoogle Scholar
Battaglia, R., (1943). La palafitta del Lago di Ledro nel Trentino. Memoria del Museo di Storia Naturale della Venezia Tridentina. 7, 163.Google Scholar
Berger, A., Loutre, M.F., (1991). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews. 10, 297317.CrossRefGoogle Scholar
Beug, H.J., (1964). Untersuchungen zur spätglazialen Vegetationsgeschichte im Gardaseegebiet unter besonderer Berücksichtigung der mediterranen Arten. Flora. 154, 401444.Google Scholar
Bird, M., Austin, W.E.N., Wurster, C.M., Fifield, L.K., Mojtahid, M., Sargeant, C., (2010). Punctuated eustatic sea-level rise in the early mid-Holocene. Geology. 38, 803806.CrossRefGoogle Scholar
Björck, S., Muscheler, R., Kromer, B., Andresen, C.S., Heinemeier, J., Johnsen, S., Conley, D., Koç, N., Spurk, M., Veski, S., (2001). High-resolution analyses of an early Holocene climate event may imply decreased solar forcing as an important climate trigger. Geology. 29, 11071110.2.0.CO;2>CrossRefGoogle Scholar
Björck, S., Rundgren, M., Ingolfsson, O., Funder, S., , (1997). The Preboreal oscillation around the Nordic seas: terrestrial and lacustrine responses. Journal of Quaternary Science. 12, 455465.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G., (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science. 294, 21302136.CrossRefGoogle ScholarPubMed
Booth, R., Jackson, S.T., Forman, S.L., Kutzbach, J.E., Bettis, E.E., Kreig, J., Wright, D.K., (2005). A severe centennial-scale drought in mid-continental North America 4200 years ago and apparent global linkages. The Holocene. 15, 321328.CrossRefGoogle Scholar
Bos, J.A.A., van Geel, B., van der Plicht, J., Bohncke, S.J.P., (2007). Preboreal climate oscillations in Europe: wiggle-match dating and synthesis of Dutch high-resolution multi-proxy records. Quaternary Science Reviews. 26, 19271950.CrossRefGoogle Scholar
Castellarin, A., Picotti, V., Cantelli, L., Claps, M., Trombetta, L., Selli, L., Carton, A., Borsato, A., Daminato, F., Nardin, M., Santuliana, E., Veronese, L., Bollettinari, G., (2005). Riva del Garda. Note illustrative della carta geologica d'Italia alla scale 1:50 000. Foglio 080. Provincia Autonoma di Trento, L.A.C, . Firenze.Google Scholar
Digerfeldt, G., (1986). Studies on past lake-level fluctuations. Berglund, B.E., 1986, John Wiley and Sons, Handbook of Holocene Palaeoecology and Palaeohydrology, 127143.Google Scholar
Digerfeldt, G., (1988). Reconstruction and regional correlation of Holocene lake-level fluctuations in lake Bysjön, South Sweden. Boreas. 17, 165182.CrossRefGoogle Scholar
Digerfeldt, G., Sandgren, P., Olsson, S., (2007). Reconstruction of Holocene lake-level changes at Lake Xinias, central Greece. The Holocene. 17, 361367.CrossRefGoogle Scholar
Eastwood, W.J., Leng, M.J., Roberts, N., Davis, B., (2007). Holocene climate change in the eastern Mediterranean region: a comparison of stable isotope and pollen data from Lake Gölhisar, southwest Turkey. Journal of Quaternary Science. 22, 327341.CrossRefGoogle Scholar
Faegri, K., Iversen, J., (1989). Textbook of Pollen Analysis. 4th edition John Wiley & Sons.Google Scholar
Giraudi, C., (1998). Late Pleistocene and Holocene lake-level variations in Fucino Lake (Abruzzo, central Italy) inferred from geological, archaeological and historical data. In: Harrison, S.P., Frenzel, B., Huckried, U., Weiss, M., (Eds), Palaeohydrology as reflected in lake-level changes as climatic evidence for Holocene times . Paläoklimaforschung 25, pp 1–17.Google Scholar
Giraudi, C., (2004). Le oscillazioni di livello del Lago di Mezzano (Valentino-VT): variazioni climatiche e interventi antropici. Il Quaternario. 17, 221230.Google Scholar
Giraudi, C., (2005). Middle to Late Holocene glacial variations, periglacial processes and alluvial sedimentation on the higher Apennine massifs (Italy). Quaternary Research. 64, 176184.CrossRefGoogle Scholar
Giraudi, C., Magny, M., Zanchetta, G., Drysdale, R.N., (2011). The Holocene climatic evolution of the Medtirreanean Italy: a review of the geological continental data. The Holocene.Google Scholar
Harrison, S.P., Digerfeldt, G., (1993). European lakes as palaeohydrological and palaeoclimatic indicators. Quaternary Science Reviews. 12, 233248.CrossRefGoogle Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Röhl, U., (2001). Southward migration of the Intertropical Convergence Zone through the Holocene. Science. 293, 13041308.CrossRefGoogle ScholarPubMed
Kröpelin, S., Verschuren, D., Lézine, A.M., Eggermont, H., Cocquyt, C., Francus, P., Cazet, J.P., Fagot, M., Rumes, B., Russell, J.M., Darius, F., Conley, D.J., Schuster, M., von Suchodoletz, H., Engstrom, D.R., (2008). Climate-driven ecosystem succession in the Sahara: the past 6000 years. Science. 320, 765768.CrossRefGoogle ScholarPubMed
Magny, M., (1992). Holocene lake-level fluctuations in Jura and the northern subalpine ranges, France: regional pattern and climatic implications. Boreas. 21, 319334.CrossRefGoogle Scholar
Magny, M., (1998). Reconstruction of Holocene lake-level changes in the Jura (France): methods and results. Paläoklimaforschung. 25, 6785.Google Scholar
Magny, M., (2004). Holocene climatic variability as reflected by mid-European lake-level fluctuations, and its probable impact on prehistoric human settlements. Quaternary International. 113, 6579.CrossRefGoogle Scholar
Magny, M., (2006). Holocene fluctuations of lake levels in west-central Europe: methods of reconstruction, regional pattern, palaeoclimatic significance and forcing factors. Encyclopedia of Quaternary Geology, Elsevier, 1389–1399.Google Scholar
Magny, M., de Beaulieu, J.L., Drescher-Schneider, R., Vannière, B., Walter-Simonnet, A.V., Miras, Y., Millet, L., Bossuet, G., Peyron, O., Brugiapaglia, E., Leroux, A., (2007). Holocene climate changes in the central Mediterranean as recorded by lake-level fluctuations at Lake Accesa (Tuscany, Italy). Quaternary Science Reviews. 26, 17361758.CrossRefGoogle Scholar
Magny, M., Bégeot, C., (2004). Hydrological changes in the European midlatitudes associated with freshwater outbursts from Lake Agassiz during the Younger Dryas event and the early Holocene. Quaternary Research. 61, 181192.CrossRefGoogle Scholar
Magny, M., Bégeot, C., Guiot, J., Peyron, O., (2003). Contrasting patterns of hydrological changes in Europe in response to Holocene climate cooling phases. Quaternary Science Reviews. 22, 15891596.Google Scholar
Magny, M., Bossuet, G., Ruffaldi, P., Leroux, A., Mouthon, J., (2011a). Orbital imprint on Holocene palaeohydrological variations in west-central Europe as reflected by lake-level changes at Cerin (Jura Mountains, eastern France). Journal of Quaternary Science DOI: .CrossRefGoogle Scholar
Magny, M., Galop, D., Bellintani, P., Desmet, M., Didier, J., Haas, J.N., Martinelli, N., Pedrotti, A., Scandolari, R., Stock, A., Vannière, B., (2009a). Late-Holocene climatic variability south of the Alps as recorded by lake-level fluctuations at Lake Ledro, Trentino, Italy. The Holocene. 19, 575589.CrossRefGoogle Scholar
Magny, M., Peyron, O., Sadori, L., Ortu, E., Zanchetta, G., Vannière, B., Tinner, W., (2011b). Contrasting patterns of precipitation seasonality during the Holocene in the south- and north-central Mediterranean. Journal of Quaternary Science DOI: .Google Scholar
Magny, M., Vannière, B., Zanchetta, G., Fouache, E., Touchais, G., Petrika, L., Coussot, C., Walter-Simonnet, A.V., Arnaud, F., (2009b). Possible complexity of the climatic event around 4300–3800 cal BP in the central and western Mediterranean. The Holocene. 19, 823833.CrossRefGoogle Scholar
Marchant, R., Hooghiemstra, H., (2004). Rapid environmental change in African and South American tropics around 4000 years before present: a review. Earth Science Reviews. 66, 217260.Google Scholar
Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlen, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R., Steig, E.J., (2004). Holocene climate variability. Quaternary Research. 62, 243255.Google Scholar
Mitchum, R.M., Vail, J.R., Thompson, S., (1977). The depositional sequence as a basic unit for stratigraphic analysis. American Association Geolological Bulletin, Memory. 26, 5362.Google Scholar
Mouthon, J., (1984). Les mollusques. In: SRAE, , (Ed.), Les lacs de Clairvaux, Monographies écologiques. Service Régional d'Aménagement des Eaux Report, 67–75.Google Scholar
Peyron, O., Goring, S., Dormoy, I., Kotthoff, U., Pross, J., de Bealieu, J.L., Drescher-Schneider, R., Magny, M., (2011). Holocene seasonality changes in the central Mediterranean region reconstructed from the pollen sequences of Lake Accesa (Italy) and Tenaghi Philippon (Greece). The Holocene.CrossRefGoogle Scholar
Ramrath, A., Nowaczyk, N., Negendank, J., (1999). Sedimentological evidence for environmental changes since 34,000 years BP from Lago di Mezzano, central Italy. Journal of Paleolimnology. 21, 423435.CrossRefGoogle Scholar
Ramrath, A., Sadori, L., Negendank, J., (2000). Sediment from Lago di Mezzano, central Italy: a record of Lateglacial/Holocene climatic variations and anthropogenic impact. The Holocene. 10, 8795.CrossRefGoogle Scholar
Rasmussen, T.L., Thompsen, E., (2010). Holocene temperature and salinity variability of the Atlantic Water inflow to the Nordic seas. The Holocene. 8, 12231234.CrossRefGoogle Scholar
Reed, J.M., Stevenson, A.C., Juggins, S., (2001). A multi-proxy record of Holocene climatic change in southwestern Spain: the Laguna di Medina, Cadiz. The Holocene. 11, 707719.CrossRefGoogle Scholar
Reille, M., (1992). 1998. Pollen et spores d'Europe et d'Afrique du nord. Laboratoire de Botanique Historique et Palynologie. Université d'Aix-Marseille, France.Google Scholar
Reimer, P., (2004). IntCal04 terrestrial radiocarbon age calibration, 26–0 ka BP. Radiocarbon. 46, 10291058.Google Scholar
Reisigl, H., (2001). Geologie. Institut für Botanik, Universität Innsbruck, Flora und Vegetation der Berge westlich des Gardasees. Führer zur Geobotanischen Bergwoche Val di Ledro, 39 pp.Google Scholar
Sadori, L., Narcisi, B., (2001). The postglacial record of environmental history from Lago di Pergusa, Sicily. The Holocene. 11, 655671.CrossRefGoogle Scholar
Sadori, L., Giraudi, C., Petitti, P., Ramrath, A., (2004). Human impact at Lago di Mezzano (central Italy) during the Bronze Age: a multidisciplinary approach. Quaternary International. 113, 517.CrossRefGoogle Scholar
Siani, G., Paterne, M., Colin, C., (2010). Late Glacial to Holocene planktic foraminifera bioevents and climatic record in the South Adriatic Sea. Journal of Quaternary Science DOI: .CrossRefGoogle Scholar
Shotton, F.W., Blundell, D.J., Williams, R.E.G., (1968). Birmingham University radiocarbon dates II. Radiocarbon. 10, 200206.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J., Spurk, M., (1998). Intcal98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon. 40, 10411083.CrossRefGoogle Scholar
Tzedakis, P.C., (2007). Seven ambiguities in the Mediterranean palaeoenvironmental narrative. Quaternary Science Reviews. 26, 20422066.CrossRefGoogle Scholar
van der Plicht, J., van Geel, B., Bohncke, S.J.P., Bos, J.A.A., Blaauw, M., Speranza, A.O.M., Muscheler, R., Björck, S., (2004). The Preboreal climate reversal and a subsequent solar-forced climate shift. Journal of Quaternary Science. 19, 263269.CrossRefGoogle Scholar
Yu, S.-Y., Colman, S.M., Lowell, T.V., Milne, G.A., Fisher, T.G., Breckenridge, A., Boyd, M., Teller, J.T., (2010). Freshwater outburst from Lake Superior as a trigger for the cold event 9300 years ago. Science. 328, 11621266.CrossRefGoogle ScholarPubMed
Zanchetta, G., Drysdale, R.N., Hellstrom, J.C., Fallick, A.E., Isola, I., Gagan, M.K., Pareschi, M.T., (2007). Enhanced rainfall in the western Mediterranean during deposition of sapropel 1: stalagmite evidence from Corchia cave (Central Italy). Quaternary Science Reviews. 26, 279286.CrossRefGoogle Scholar
Zhao, C., Yu, Z., Zhao, Y., (2010). Holocene climate trend, variability, and shift documented by lacustrine stable-isotope record in the northeastern United States. Quaternary Science Reviews. 29, 18311843.CrossRefGoogle Scholar
Zolitschka, B., Wulf, S., Negendank, J.F.W., (2000). Circum-Mediterranean lake records as archives of climatic and human history. Quaternary International. 73, 74 15.CrossRefGoogle Scholar