Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T01:51:12.417Z Has data issue: false hasContentIssue false

Beringia as an Ice Age genetic museum

Published online by Cambridge University Press:  20 January 2017

Beth Shapiro
Affiliation:
Henry Wellcome Ancient Biomolecules Centre, Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS UK
Alan Cooper*
Affiliation:
Henry Wellcome Ancient Biomolecules Centre, Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS UK
*
*Corresponding author. Fax: +44-1865-271249. E-mail address:alan.cooper@zoo.ox.ac.uk (A. Cooper).

Abstract

Thousands of Late Pleistocene remains are found in sites throughout Beringia. These specimens comprise an Ice Age genetic museum, and the DNA contained within them provide a means to observe evolutionary processes within populations over geologically significant time scales. Phylogenetic analyses can identify the taxonomic positions of extinct species and provide estimates of speciation dates. Geographic and temporal divisions apparent in the genetic data can be related to ecological change, human impacts, and possible landscape mosaics in Beringia. The application of ancient DNA techniques to traditional paleontological studies provides a new perspective to long-standing questions regarding the paleoenvironment and diversity of Late Pleistocene Beringia.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Austin, J.J., Ross, A.J., Smith, A.B., Fortey, R.A., and Thomas, R.H., (1997). Problems of reproducibility—Does geologically ancient DNA survive in amber-preserved insects?. Proceedings of the Royal Society of London Series B, Biological Sciences 264, 467474.CrossRefGoogle ScholarPubMed
Barnes, I., Holton, J., Vaira, D., Spigelman, M., and Thomas, M.G., (2000). An assessment of the long-term preservation of the DNA of a bacterial pathogen in ethanol-preserved archival material. Journal of Pathology 192, 554559.Google Scholar
Barnes, I., Matheus, P.E., Shapiro, B., Jensen, D., and Cooper, A., (2002). Dynamics of mammal population extinctions in Eastern Beringia during the last glaciation. Science 295, 22672270.CrossRefGoogle Scholar
Cano, R.J., Poinar, H.N., Pieniazek, N.J., Acra, A., and Poinar, G.O., (1993). Amplification and sequencing of DNA from a 120–135-Million-Year-Old Weevil. Nature 363, 536538.CrossRefGoogle ScholarPubMed
Colinvaux, P., (1996). Low-down on the land bridge. Nature 382, 2123.CrossRefGoogle Scholar
Cooper, A., Lalueza-Fox, C., Anderson, S., Rambaut, A., Austin, J., and Ward, R., (2001). Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409, 704707.Google Scholar
Cooper, A., and Poinar, H.N., (2000). Ancient DNA. do it right or not at all. Science 289, 11391139.Google Scholar
Cooper, A., Rhymer, J., James, H.F., Olson, S.L., McIntosh, C.E., Sorenson, M.D., and Fleischer, R.C., (1996). Ancient DNA and island endemics. Nature 381, 484484.Google Scholar
Cwynar, L.C., and Ritchie, J.C., (1980). Arctic-steppe tundra. a Yukon perspective. Science 208, 13751378.Google Scholar
Desalle, R., Gatesy, J., Wheeler, W., and Grimaldi, D., (1992). DNA-sequences from a fossil termite in oligomiocene amber and their phylogenetic implications. Science 257, 19331936.CrossRefGoogle ScholarPubMed
Doran, G.H., Dickel, D.N., Ballinger, W.E., Agee, O.F., Laipis, P.J., and Hauswirth, W.W., (1986). Anatomical, cellular and molecular analysis of 8,000-yr-old human-brain tissue from the Windover archaeological site. Nature 323, 803806.Google Scholar
Drummond, A., and Rodrigo, A.G., (2000). Reconstructing genealogies of serial samples under the assumption of a molecular clock using serial-sample UPGMA. Molecular Biology and Evolution 17, 18071815.CrossRefGoogle ScholarPubMed
Elias, S.A., (2000). Late Pleistocene climates of Beringia, based on analysis of fossil beetles. Quaternary Research 53, 229235.CrossRefGoogle Scholar
Golenberg, E.M., Giannasi, D.E., Clegg, M.T., Smiley, C.J., Durbin, M., Henderson, D., and Zurawski, G., (1990). Chloroplast DNA-sequence from a Miocene magnolia species. Nature 344, 656658.CrossRefGoogle ScholarPubMed
Greenwood, A.D., Capelli, C., Possnert, G., and Pääbo, S., (1999). Nuclear DNA sequences from late Pleistocene megafauna. Molecular Biology and Evolution 16, 14661473.Google Scholar
Guthrie, R.D., (1982). Mammals of the Mammoth Steppe as paleoenvironmental indicators. Hopkins, D.M., Matthews, J.V., Schweger, C.E., and Young, S.B. Paleoecology of Beringia. Academic Press, New York. 307329.Google Scholar
Guthrie, R.D., (1990). Frozen fauna of the Mammoth Steppe. The story of Blue Babe. University of Chicago Press, Chicago.Google Scholar
Guthrie, R.D., (2001). Origin and causes of the mammoth steppe. a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quaternary Science Reviews 20, 549574.Google Scholar
Hagelberg, E., and Clegg, J.B., (1991). Isolation and characterization of DNA from archaeological bone. Proceedings of the Royal Society of London Series B, Biological Sciences 244, 4550.Google ScholarPubMed
Hagelberg, E., Thomas, M.G., Cook, C.E., Sher, A.V., Baryshnikov, G.F., and Lister, A.M., (1994). DNA from ancient mammoth bones. Nature 370, 333334.Google Scholar
Handt, O., Höss, M., Krings, M., and Pääbo, S., (1994). Ancient DNA—Methodological challenges. Experientia 50, 524529.Google Scholar
Hansen, A.J., Willerslev, E., Wiuf, C., Mourier, T., and Arctander, P., (2001). Statistical evidence for miscoding lesions in ancient DNA templates. Molecular Biology and Evolution 18, 262265.Google Scholar
Harington, C.R., (1985). Comments on Canadian Pleistocene mammals. Acta Zoologica Fennica 170, 193197.Google Scholar
Heaton, T.H., Talbot, S.L., and Shields, G.F., (1996). An Ice Age refugium for large mammals in the Alexander Archipelago, southeastern Alaska. Quaternary Research 46, 186192.CrossRefGoogle Scholar
Higuchi, R., Bowman, B., Freiberger, M., Ryder, O.A., and Wilson, A.C., (1984). DNA-sequences from the quagga, an extinct member of the horse family. Nature 312, 282284.Google Scholar
Hofreiter, M., Jaenicke, V., Serre, D., von Haeseler, A., and Pääbo, S., (2001). DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Research 29, 47934799.Google Scholar
Hofreiter, M., Serre, D., Poinar, H.N., Kuch, M., and Pääbo, S., (2001). Ancient DNA. Nature Reviews Genetics 2, 353359.CrossRefGoogle ScholarPubMed
Höss, M., Pääbo, S., and Vereshchagin, N.K., (1994). Mammoth DNA-sequences. Nature 370, 333 Google Scholar
Leonard, J.A., Wayne, R.K., and Cooper, A., (2000). Population genetics of Ice Age brown bears. Proceedings of the National Academy of Sciences of the United States of America 97, 16511654.CrossRefGoogle ScholarPubMed
Lindahl, T., (1993). Instability and decay of the primary structure of DNA. Nature 362, 709715.Google Scholar
Lindahl, T., (1997). Facts and artifacts of ancient DNA. Cell 90, 13.Google Scholar
Lopez, J.V., Cevario, S., and Obrien, S.J., (1996). Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome. Genomics 33, 229246.Google Scholar
Matheus, P.E., (1995). Diet and co-ecology of Pleistocene short-faced bears and brown bears in Eastern Beringia. Quaternary Research 44, 447453.CrossRefGoogle Scholar
Mullis, K.B., and Faloona, F.A., (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology 155, 335350.CrossRefGoogle Scholar
Ozawa, T., Hayashi, S., and Mikhelson, V.M., (1997). Phylogenetic position of Mammoth and Steller’s sea cow within Tethytheria demonstrated by mitochondrial DNA sequences. Journal of Molecular Evolution 44, 406413.Google Scholar
Pääbo, S., (1985). Molecular-cloning of ancient Egyptian mummy DNA. Nature 314, 644645.Google Scholar
Pääbo, S., (1989). Ancient DNA—Extraction, characterization, molecular-cloning, and enzymatic amplification. Proceedings of the National Academy of Sciences of the United States of America 86, 19391943.Google Scholar
Pääbo, S., and Wilson, A., (1991). Miocene DNA sequences. a dream come true?. Current Biology 1, 4546.Google Scholar
Poinar, H.N., Hofreiter, M., Spaulding, W.G., Martin, P.S., Stankiewicz, B.A., Bland, H., Evershed, R.P., Possnert, G., and Pääbo, S., (1998). Molecular coproscopy. dung and diet of the extinct ground sloth Nothrotheriops shastensis . Science 281, 402406.CrossRefGoogle ScholarPubMed
Sidow, A., Wilson, A.C., and Pääbo, S., (1991). Bacterial-DNA in Clarkia fossils. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 333, 429433.Google ScholarPubMed
Soltis, P.S., (1995). Fossil DNA. its potential for biosystematics. Hoch, P.C., and Stephenson, A.G. Experimental and Molecular Approaches to Plant Biosystematics. Missouri Botanical Gardens, St. Louis. 113.Google Scholar
Talbot, S.L., and Shields, G.F., (1996). Phylogeography of brown bears (Ursus arctos) of Alaska and paraphyly within the Ursidae. Molecular Phylogenetics and Evolution 5, 477494.Google Scholar
Thomas, M.G., Hagelberg, E., Jones, H.B., Yan, Z.Y., and Lister, A.M., (2000). Molecular and morphological evidence on the phylogeny of the Elephantidae. Proceedings of the Royal Society of London Series B, Biological Sciences 267, 24932500.Google Scholar
Thomas, R.H., Schaffner, W., Wilson, A.C., and Pääbo, S., (1989). DNA phylogeny of the extinct marsupial wolf. Nature 340, 465467.Google Scholar
Thomas, W.K., Pääbo, S., Villablanca, F.X., and Wilson, A.C., (1990). Spatial and temporal continuity of kangaroo rat-populations shown by sequencing mitochondrial-DNA from museum specimens. Journal of Molecular Evolution 31, 101112.Google Scholar
Vanderkuyl, A.C., Kuiken, C.L., Dekker, J.T., Perizonius, W.R.K., and Goudsmit, J., (1995). Nuclear counterparts of the cytoplasmic mitochondrial 12s ribosomal-RNA gene—A problem of ancient DNA and molecular phylogenies. Journal of Molecular Evolution 40, 652657.Google Scholar
Vereshchagin, N.K., and Baryshnikov, G.F., (1982). Paleoecology of the mammoth fauna in the Eurasian arctic. Hopkins, D.M., Matthews, J.V., Schweger, C.E., and Young, S.B. Paleoecology of Beringia. Academic Press, New York. 267279.Google Scholar
Vila, C., Leonard, J.A., Gotherstrom, A., Marklund, S., Sandberg, K., Liden, K., Wayne, R.K., and Ellegren, H., (2001). Widespread origins of domestic horse lineages. Science 291, 474477.CrossRefGoogle ScholarPubMed
Woodward, S.R., Weyand, N.J., and Bunnell, M., (1994). DNA-sequence from Cretaceous Period bone fragments. Science 266, 12291232.Google Scholar
Yang, H., Golenberg, E.M., and Shoshani, J., (1996). Phylogenetic resolution within the elephantidae using fossil DNA sequence from the American mastodon (Mammut americanum) as an outgroup. Proceedings of the National Academy of Sciences of the United States of America 93, 11901194.Google Scholar
Yousten, A.A., and Rippere, K.E., (1997). DNA similarity analysis of a putative ancient bacterial isolate obtained from amber. Fems Microbiology Letters 152, 345347.Google Scholar
Zhang, D.X., and Hewitt, G.M., (1996). Nuclear integrations. challenges for mitochondrial DNA markers. Trends in Ecology and Evolution 11, 247251.Google Scholar
Zischler, H., Höss, M., Handt, O., Vonhaeseler, A., Vanderkuyl, A.C., Goudsmit, J., and Pääbo, S., (1995). Detecting dinosaur DNA. Science 268, 11921193.Google Scholar