Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T15:40:59.410Z Has data issue: false hasContentIssue false

Assessing the paleoenvironmental potential of Pliocene to Holocene tufa deposits along the Ghaap Plateau escarpment (South Africa) using stable isotopes

Published online by Cambridge University Press:  20 January 2017

Taylor Louise Doran*
Affiliation:
Department of Earth and Planetary Sciences, Birkbeck, University of London, London WC1E 7HX, UK Department of Earth Sciences, University College London, London WC1E 6BT, UK
Andy I.R. Herries
Affiliation:
The Australian Archaeomagnetism Laboratory, Department of Archaeology and History, La Trobe University, Melbourne Campus, Bundoora, Vic 3086, Australia Centre for Anthropological Research, University of Johannesburg, Gauteng, South Africa
Philip J. Hopley
Affiliation:
Department of Earth and Planetary Sciences, Birkbeck, University of London, London WC1E 7HX, UK Department of Earth Sciences, University College London, London WC1E 6BT, UK
Hank Sombroek
Affiliation:
Department of Earth and Planetary Sciences, Birkbeck, University of London, London WC1E 7HX, UK
John Hellstrom
Affiliation:
School of Earth Sciences, University of Melbourne, Victoria 3010, Australia
Ed Hodge
Affiliation:
Formerly Institute of Environmental Research, ANSTO, PMB1 Menai, NSW 2234, Australia
Brian F. Kuhn
Affiliation:
Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
*
*Corresponding author: 5323 Dover Street, Oakland, CA 94609, USA.E-mail address:Taylorlouisedoran@gmail.com (T.L. Doran).

Abstract

The tufa deposits of the Ghaap Plateau escarpment provide a rich, yet minimally explored, geological archive of climate and environmental history coincident with hominin evolution in South Africa. This study examines the sedimentary and geochemical records of ancient and modern tufas from Buxton-Norlim Limeworks, Groot Kloof, and Gorrokop, to assess the potential of these sediments for providing reliable chronologies of high-resolution, paleoenvironmental information. Chronometric dating demonstrates that tufa formation has occurred from at least the terminal Pliocene through to the modern day. The stable isotope records show a trend toward higher, more variable δ18O and δ13C values with decreasing age from the end of the Pliocene onwards. The long-term increase in δ18O values corresponds to increasingly arid conditions, while increasing δ13C values reflect the changing proportion of C3/C4 vegetation in the local environment. Analysis of the Thabaseek Tufa, in particular, provides valuable evidence for reconstructing the depositional and chronological context of the enigmatic Taung Child (Australopithecus africanus). Collectively, the results of the present study demonstrate the potential of these deposits for developing high-precision records of climate change and ultimately, for understanding the causal processes relating climate and hominin evolution.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altermann, W. Wotherspoon, J.M. (1995). The carbonates of the Transvaal and Griqualand West Sequences of the Kaapvaal craton, with special reference to the Lime Acres limestone deposit. Mineral Deposita 30, 124134.Google Scholar
Andrews, J.E. (2006). Palaeoclimatic records from stable isotopes in riverine tufas: synthesis and review. Earth-Science Reviews 75, 85104.Google Scholar
Andrews, J.E. Riding, R. Dennis, P.F. (1997). The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 129, 171189.Google Scholar
Andrews, J.E. Pedley, H.M. Dennis, P.F. (2000). Palaeoenvironmental records in Holocene Spanish tufas: a stable isotope approach in search of reliable climatic archives. Sedimentology 47, 961978.Google Scholar
Arenas, C. Cabrera, L. Ramos, E. (2007). Sedimentology of tufa facies and continental microbialites from the Palaeogene of Mallorca Island (Spain). Sedimentary Geology 197, 127.Google Scholar
Arenas, C. Vázquez-Urbez, M. Auqué, L. Sancho, C. Osácar, C. Pardo, G. (2014). Intrinsic and extrinsic controls of spatial and temporal variations in modern fluvial tufa sedimentation: a thirteen-year record from a semi-arid environment. Sedimentology 61, 90132.Google Scholar
Arenas-Abad, C., Vázquez-Urbez, M., Pardo-Tirapu, G., Sancho-Mercén, C., (2010). Fluvial and Associated Carbonate Deposits. In: Alonso-Zarza, A. M., Tanner, L. H. (Eds.), Carbonates in Continental Settings: Facies, Environments, and Processes. Developments in Sedimentology. Vol. 61, . (Series Ed.: Van Loon, A. J.). Amsterdam: Elsevier, pp. 133175.Google Scholar
Ashley, G.M. Dominguez-Rodrigo, M. Bunn, H.T. Mabulla, A.Z.P. Bequedano, E. (2010). Sedimentary geology and human origins: a fresh look at Olduvai Gorge, Tanzania. Journal of Sedimentary Research 80, 703709.CrossRefGoogle Scholar
Beaumont, P.B. Morris, D. (1990). Guide to Archaeological Sites in the Northern Cape. Kimberley, McGregor Museum.Google Scholar
Beaumont, P.B. Vogel, J.C. (1993). What turned the young tufas on at Gorrokop?. South African Journal of Science 89, 196198.Google Scholar
Beaumont, P.B. Vogel, J.C. (2006). On a timescale for the past million years of human history in central South Africa. South African Journal of Science 102, 217228.Google Scholar
Blackwell, B. Cho, E.K. Herries, A.I.R. Hopley, P. Skinner, A.R. Curnoe, D. (2012). New ESR ages for the Early Stone Age deposits and an early Lechwe (Kobus leche) find at Groot Kloof (Northern Cape Province, South Africa). Palaeoanthropology Society Meeting Abstracts, Memphis, TN, 17–18 April 2012. A5 Google Scholar
Butzer, K. (1974). Paleoecology of South African australopithecines: Taung revisited. Current Anthropology 15, 367382.Google Scholar
Butzer, K. Stuckenrath, R. Bruzewicz, A. Helgren, D. (1978). Late Cenozoic paleoclimates of the Gaap Escarpment, Kalahari margin, South Africa. Quaternary Research 10, 310339.Google Scholar
Carthew, K.D. Taylor, M.P. Drysdale, R.N. (2006). An environmental model of fluvial tufas in the monsoonal tropics, Barkly karst, northern Australia. Geomorphology 73, 78100.CrossRefGoogle Scholar
Chafetz, H.S. Utech, N.M. Fitzmaurice, S.P. (1991). Differences in the δ18O and δ13C signatures of seasonal laminae comprising travertine stromatolites. Journal of Sedimentary Petrology 61, 10151028.Google Scholar
Cheng, H. Edwards, R.L. Hoff, J. Gallup, C.D. Richards, C.D. Asmerom, Y. (2000). The half-lives of Uranium-234 and Thorium-230. Chemical Geology 169, 1733.CrossRefGoogle Scholar
Craig, H. (1965). The measurements of oxygen isotope palaeotemperature: stable isotopes in oceanographic studies and paleotemperatures. Tongiori, E. Proceedings of the Third Spoleto Conference, Spoleto, Italy Sischi and Figli, Pisa. 161182.Google Scholar
Cremaschi, M. Zerboni, A. Spötl, C. Felletti, F. (2010). The calcareous tufa in the Tadrart Acacus Mt. (SW Fezzan, Libya) An early Holocene palaeoclimate archive in the central Sahara. Palaeogeography, Palaeoclimatology, Palaeoecology 287, 8194.Google Scholar
Curnoe, D. Herries, A. Brink, J. Hopley, P. Van Reyneveld, K. Henderson, Z. Morris, D. (2005). Beyond Taung: palaeoanthropological research at Groot Kloof, Ghaap Escarpment, Northern Cape Province, South Africa. Nyame Akuma 64, 5865.Google Scholar
Curnoe, D. Herries, A. Brink, J. Hopley, P. Van Reyneveld, K. Henderson, Z. Morris, D. (2006). Discovery of Middle Pleistocene fossil and stone tool-bearing deposits at Groot Kloof, Ghaap escarpment, Northern Cape Province. South African Journal of Science 102, 180184.Google Scholar
Dart, R.A. (1925). Australopithecus africanus: the man-ape of South Africa. Nature 115, 195199.Google Scholar
deMenocal, P.B. (2004). African climate change and faunal evolution during the Pliocene–Pleistocene. Earth and Planetary Letters 220, 324.Google Scholar
Domínguez-Villar, D. Vázquez-Navarro, J.A. Cheng, H. Edwards, R.L. (2011). Freshwater tufa record from Spain supports evidence for the past interglacial being wetter than the Holocene in the Mediterranean region. Global and Planetary Change 77, 129141.Google Scholar
Ehleringer, J.R. Sage, R.F. Flanagan, L.B. Pearcy, R.W. (1991). Climate change and the evolution of C4 photosynthesis. Trends in Ecology & Evolution 6, 9599.Google Scholar
Ehleringer, J.R. Cerling, T.E. Helliker, B.R. (1997). C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112, 285299.Google Scholar
Ford, T.D. Pedley, H.M. (1996). A review of tufa and travertine deposits of the world. Earth-Science Reviews 41, 117175.Google Scholar
Garnett, E.R. Andrews, J.E. Preece, R.C. Dennis, P.F. (2004). Climatic change recorded by stable isotopes and trace elements in a British Holocene tufa. Journal of Quaternary Science 19, 251262.Google Scholar
Hellstrom, J.C. (2003). Rapid and accurate U/Th dating using parallel ion counting multi-collector ICP-MS. Journal of Analytical Atomic Spectrometry 18, 13461351.Google Scholar
Hellstrom, J.C. (2006). U–Th dating of speleothems with high initial Th-230 using stratigraphical constraint. Quaternary Geochronology 1, 289295.Google Scholar
Herries, A. Curnoe, D. Brink, J. Henderson, Z. Morris, D. (2007). Landscape evolution, palaeoclimate and Later Stone Age occupation of the Ghaap Plateau escarpment, Northern Cape Province, South Africa. Antiquity 81, 313 Google Scholar
Herries, A.I.R. Pickering, R. Adams, J.W. Curnoe, D. Warr, G. Latham, A.G. Shaw, J. (2013). A multi-disciplinary perspective on the age of Australopithecus in Southern Africa. Reed, K.E., Fleagle, J.G., and Leakey, R.E. The paleobiology of Australopithecus . Springer, Dordrecht. 2140.Google Scholar
Hogg, A.G. Hua, Q. Blackwell, P.G. Niu, M. Buck, C.E. Guilderson, T.P. Heaton, T.J. Palmer, J.G. Reimer, P.J. Reimer, R.W. Turney, C.S.M. Zimmerman, S.R.H. (2013). ShCal13 Southern Hemisphere Calibration, 0–50,000 years cal bp. Radiocarbon 55, 18891903.Google Scholar
Holmgren, K. Karlen, W. Shaw, P.A. (1995). Paleoclimatic significance of the stable isotopic composition and petrology of a Late Pleistocene stalagmite from Botswana. Quaternary Research 43, 320328.CrossRefGoogle Scholar
Holmgren, K. Lee-Thorp, J. Cooper, G. Lundblad, K. Partridge, T. Scott, L. Sithaldeen, R. Talma, A.S. Tyson, P.D. (2003). Persistent millennial-scale climatic variability over the past 25,000 years in Southern Africa. Quaternary Science Reviews 22, 23112326.Google Scholar
Holzkämper, S. Holmgren, K. Lee-Thorp, J. Taima, S. Mangini, A. Partridge, T. (2009). Late Pleistocene stalagmite growth in Wolkberg Cave, South Africa. Earth and Planetary Science Letters 282, 212221.Google Scholar
Hopley, P. Marshall, J. Weedon, G. Latham, A.G. Herries, A.I.R. Kuykendall, K.L. (2007). Orbital forcing and the spread of C4 grasses in the late Neogene: stable isotope evidence from South African speleothems. Journal of Human Evolution 53, 620634.Google Scholar
Hopley, P. Weedon, G. Marshall, J. Latham, A.G. Herries, A.I.R. Kuykendall, K.L. (2007). High- and low-latitude orbital forcing of early hominin habitats in South Africa. Earth and Planetary Science Letters 256, 419432.Google Scholar
Hopley, P. Herries, A.I.R. Baker, S.E. Kuhn, B. Menter, C. (2013). Brief communication: beyond the South African cave paradigm—Australopithecus africanus from Plio–Pleistocene paleosol deposits at Taung. American Journal of Physical Anthropology 151, 2 316324.Google Scholar
Horvatinč́ić, N. Krajcar Bronic, I. Obelic, B. (2003). Differences in the 14C age, 13C and 18O of Holocene tufa and speleothems in the Dinaric karst. Palaeogeography Palaeoclimatology Palaeoecology 193, 139157.Google Scholar
Humphreys, A.J.B. Thackeray, A.I. (1983). Ghaap and Gariep: Later Stone Age Studies in the Northern Cape. South African Archaeological Society, 328 Google Scholar
IAEA/WMO (2014). Global Network of Isotopes in Precipitation. The GNIP Database. Accessible at http://iaea.org/waterGoogle Scholar
Johnson, C.R. Ashley, G.M. De Wet, C.B. Dvoretsky, R. Park, L. Hover, V.C. Owen, R.B. McBrearty, S. (2009). Tufa as a record of perennial fresh water in a semi-arid rift basin, Kapthurin Formation, Kenya. Sedimentology 56, 11151137.Google Scholar
Jones, B., Renaut, R. W., (2010). Calcareous Spring Deposits in Continental Settings. In: Alonso-Zarza, A. M., Tanner, L. H. (Eds.), Carbonates in Continental Settings: Facies, Environments, and Processes. Developments in Sedimentology. Vol. 61., (Series Ed.: Van Loon, A. J.). Amsterdam, Elsevier, pp. 177224.Google Scholar
Jouzel, J. Masson-Delmotte, V. et al Orbital and millennial antarctic climate variability over the past 800,000 years. Science 317, 5839 (2007). 793796.Google Scholar
Klein, R.G. Cruz-Uribe, K. Beaumont, P.B. (1991). Environmental, ecological, and paleoanthropological implications of the late Pleistocene mammalian fauna from Equus Cave, Northern Cape Province, South Africa. Quaternary Research 36, 94119.CrossRefGoogle Scholar
Kulongoski, J. Hilton, D. Selaolo, E. (2004). Climate variability in the Botswana Kalahari from the late Pleistocene to the present day. Geophysical Research Letters 31, L10204 Google Scholar
Laskar, J. Robutel, P. Joutel, F. Gastineau, M. Correia, A. Levrard, B. (2004). A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics 428, 261285.Google Scholar
Lee, R.K.L. Owen, R.B. Renaut, R.W. Behrensmeyer, A.K. Potts, R. Sharp, W.D. (2013). Facies, geochemistry and diatoms of late Pleistocene Olorgesailie tufas, southern Kenya Rift. Palaeogeography Palaeoclimatology Palaeoecology 374, 197217.Google Scholar
Lee-Thorp, J.A. Sponheimer, M. Luyt, J. (2007). Tracking changing environments using stable carbon isotopes in fossil tooth enamel: an example from the South African hominin sites. Journal of Human Evolution 53, 595601.Google Scholar
Lisiecki, L. Raymo, M. (2005). A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 117.Google Scholar
Lojen, S. Dolenec, T. Vokal, B. Cukrov, N. Mihelèiæ, G. Papesch, W. (2004). C and O stable isotope variability in recent freshwater carbonates (River Krka, Croatia). Sedimentology 51, 361375.Google Scholar
Maslin, M.A. Christensen, B. (2007). Tectonics, orbital forcing, global climate change, and human evolution in Africa. Journal of Human Evolution 53, 443464.Google Scholar
McKee, J.K. (1993). The faunal age of the Taung hominid fossil deposit. Journal of Human Evolution 25, 363376.Google Scholar
McKee, J.K. (1993). Formation and geomorphology of caves in calcareous tufas and implications for the study of Taung fossil deposits. Transactions of the Royal Society of South Africa 48, 307322.Google Scholar
McKee, J.K. (1994). Catalogue of fossil sites at the Buxton Limeworks, Taung. Palaeontologia Africana 31, 7381.Google Scholar
Nicoll, K. Giegengack, R. Kleindienst, M. (1999). Petrogenesis of artifact-bearing fossil-spring tufa deposits from Kharga Oasis, Egypt. Geoarchaeology 14, 849863.Google Scholar
O'Brien, G. Kaufman, D. Sharp, W. Atudorei, V. Parnell, R. Crossey, L. (2006). Oxygen isotope composition of modern and mid-Holocene banded travertine, Grand Canyon, Arizona, USA. Quaternary Research 65, 366379.Google Scholar
Partridge, T.C. (2000). Hominid-bearing cave and tufa deposits. Partridge, T.C., and Maud, R.R. The Cenozoic in Southern Africa. Oxford Monographs on Geology and Geophysics 40, Oxford University Press, Oxford. 100125.Google Scholar
Partridge, T.C. (2002). Were Heinrich events forced from the southern hemisphere?. South African Journal of Science 98, 4346.Google Scholar
Peabody, F.E. (1954). Travertines and cave deposits of the Kaap escarpment of South Africa, and the type locality of Australopithecus africanus Dart. Geological Society of America Bulletin 65, 671706.Google Scholar
Pedley, H.M. (1990). Classification and environmental models of cool freshwater tufas. Sedimentary Geology 68, 143154.Google Scholar
Pentecost, A. (2005). Travertine. Springer, Berlin.Google Scholar
Pickering, R. Hancox, P. Lee-Thorp, J. Grün, R. (2007). Stratigraphy, U–Th chronology, and paleoenvironments at Gladysvale Cave: insights into the climatic control of South African hominin-bearing cave deposits. Journal of Human Evolution 53, 602619.Google Scholar
Scott, L. Holmgren, K. Partridge, T.C. (2008). Reconciliation of vegetation and climatic interpretations of pollen profiles and other regional records from the last 60 thousand years in the Savanna Biome of southern Africa. Palaeogeography Palaeoclimatology Palaeoecology 257, 198206.Google Scholar
Ségalen, L. Renard, M. Lee-Thorp, J.A. Emmanuel, L. Le Callonnec, L. de Rafélis, M. Senut, B. Pickford, M. Melice, J.L. (2006). Neogene climate change and emergence of C4 grasses in the Namib, southwestern Africa, as reflected in ratite 13C and 18O. Earth and Planetary Science Letters 244, 725734.Google Scholar
Shackleton, N.J. (1995). New data on the evolution of Pliocene climatic variability. Vrba, E.S., Denton, G.H., Partridge, T.C., and Burckle, L.H. Paleoclimate and evolution, with emphasis on human origins. Yale University Press, New Haven and London. 242248.Google Scholar
Smith, J. Giegengack, R. Schwarcz, H. (2004). Constraints on Pleistocene pluvial climates through stable-isotope analysis of fossil-spring tufas and associated gastropods, Kharga Oasis, Egypt. Palaeogeography Palaeoclimatology Palaeoecology 206, 157175.Google Scholar
Vàzquez-Urbez, M. Arenas, M. Pardo, G. (2012). A sedimentary facies model for stepped, fluvial tufa systems in the Iberian Range (Spain): the Quaternary Piedra and Mesa valleys. Sedimentology 59, 502526.Google Scholar
Viles, H.A. Taylor, M.P. Nicoll, K. Neumann, S. (2007). Facies evidence of hydroclimatic regime shifts in tufa depositional sequences form the arid Naukluft Mountains, Namibia. Sedimentary Geology 195, 3953.Google Scholar
Vogel, J.C. Partridge, T.C. (1984). Preliminary radiometric ages for the Taung tufas. Vogel, J.C. Late Cainozoic Palaeoclimates of the Southern Hemisphere. Balkema, Rotterdam. 507514.Google Scholar
Supplementary material: File

Doran et al. supplementary material

Supplementary Material

Download Doran et al. supplementary material(File)
File 84.1 KB