Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T13:04:52.565Z Has data issue: false hasContentIssue false

A ~6000 yr diatom record of mid- to late Holocene fluctuations in the level of Lago Wiñaymarca, Lake Titicaca (Peru/Bolivia)

Published online by Cambridge University Press:  02 August 2017

D. Marie Weide*
Affiliation:
Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
Sherilyn C. Fritz
Affiliation:
Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
Christine A. Hastorf
Affiliation:
Department of Anthropology, University of California, Berkeley, Berkeley, California 94720, USA
Maria C. Bruno
Affiliation:
Department of Anthropology and Archaeology, Dickinson College, Carlisle, Pennsylvania 17013, USA
Paul A. Baker
Affiliation:
Division of Earth and Ocean Sciences, Duke University, Durham, North Carolina 27708, USA
Stephane Guedron
Affiliation:
Université Grenoble Alpes, IRD, ISTerre, F-38000 Grenoble, France Laboratorio de Hidroquímica, Instituto de Investigaciones Químicas, Universidad Mayor de San Andres, Campus Universitario de Cota Cota, casilla 3161, La Paz, Bolivia
Wout Salenbien
Affiliation:
Division of Earth and Ocean Sciences, Duke University, Durham, North Carolina 27708, USA
*
*Corresponding author at: Department of Earth and Atmospheric Sciences, 214 Bessey Hall, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA. E-mail address: dmarieweide@gmail.com (D.M. Weide).

Abstract

A multidecadal-scale lake-level reconstruction for Lago Wiñaymarca, the southern basin of Lake Titicaca, has been generated from diatom species abundance data. These data suggest that ~6500 cal yr BP Lago Wiñaymarca was dry, as indicated by a sediment unconformity. At ~4400 cal yr BP, the basin began to fill, as indicated by the dominance of shallow epiphytic species. It remained somewhat saline with extensive wetlands and abundant aquatic plants until ~3800 cal yr BP, when epiphytic species were replaced by planktic saline-indifferent species, suggesting a saline shallow lake. Wiñaymarca remained a relatively shallow lake that fluctuated on a multidecadal scale until ~1250 cal yr BP, when freshwater planktic species increased, suggesting a rise in lake level with a concomitant decrease in salinity. The lake became gradually fresher, dominated by deep, freshwater species from ~850 cal yr BP. By ~80 cal yr BP, saline-tolerant species were rare, and the lake was dominated by freshwater planktic diatoms, resembling the fresh and deep lake of today. These results reveal a more dynamic and chronologically specific record of lake-level fluctuations and associated ecological conditions that provide important new data for paleoclimatologists and archaeologists, to better understand human-environmental dynamics during the mid- to late Holocene.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, M.B., Binford, M.W., Brenner, M., Kelts, K.R., 1997. A 3500 14C yr high-resolution record of water-level changes in Lake Titicaca, Bolivia/Peru. Quaternary Research 47, 169180.CrossRefGoogle Scholar
Baker, P.A., Fritz, S.C., 2015. Nature and causes of Quaternary climate variation of tropical South America. Quaternary Science Reviews 124, 3147.CrossRefGoogle Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., Broda, J.P., 2001. The history of South American tropical precipitation for the past 25,000 years. Science 291, 640643.CrossRefGoogle ScholarPubMed
Bandy, M.S., Hastorf, C.A., 2007. Kala Uyuni: An Early Political Center in the Southern Lake Titicaca Basin: 2003 Excavations of the Taraco Archaeological Project. Archaeological Research Facility, University of California, Berkeley.Google Scholar
Battarbee, R., Keen, M., 1982. The use of electronically counted microspheres in absolute diatom analysis. Limnology and Oceanography 27, 184188.CrossRefGoogle Scholar
Binford, M.W., Kolata, A.L., Brenner, M., Janusek, J.W., Seddon, M.T., Abbott, M., Curtis, J.H., 1997. Climate variation and the rise and fall of an Andean civilization. Quaternary Research 47, 235248.CrossRefGoogle Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.CrossRefGoogle Scholar
Boulange, B., Aquize Jaen, E., 1981. Morphologie, hydrographie et climatologie du lac Titicaca et de son bassin versant. Revue d’Hydrobiologie Tropicale 14, 269287.Google Scholar
Bruno, M.C., 2008. Waranq Waranqa: Ethnobotanical Perspectives on Agricultural Intensification in the Lake Titicaca Basin (Taraco Peninsula, Bolivia). PhD dissertation, Washington University, St. Louis, Missouri.Google Scholar
Capriles, J.M., Moore, K.M., Domic, A.I., Hastorf, C.A., 2014. Fishing and environmental change during the emergence of social complexity in the Lake Titicaca basin. Journal of Anthropological Archaeology 34, 6677.CrossRefGoogle Scholar
Cross, S.L., Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., 2000. A new estimate of the Holocene lowstand level of Lake Titicaca, central Andes, and implications for tropical palaeohydrology. Holocene 10, 2132.CrossRefGoogle Scholar
Cross, S.L., Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., 2001. Late Quaternary climate and hydrology of tropical South America inferred from an isotopic and chemical model of Lake Titicaca, Bolivia and Peru. Quaternary Research 56, 19.CrossRefGoogle Scholar
D’Agostino, K., Seltzer, G., Baker, P., Fritz, S., Dunbar, R., 2002. Late-Quaternary lowstands of Lake Titicaca: evidence from high-resolution seismic data. Palaeogeography, Palaeoclimatology, Palaeoecology 179, 97111.CrossRefGoogle Scholar
Dejoux, C., Iltis, A., 1992. Introduction. In: Dejoux, C., Iltis, A. (Ed.), Lake Titicaca: A Synthesis of Limnological Knowledge. Monographiae Biologicae 68. Springer, Dordrecht, the Netherlands, pp. xvxx.CrossRefGoogle Scholar
Erickson, C.L., 1999. Neo-environmental determinism and agrarian ‘collapse’ in Andean prehistory. Antiquity 73, 634642.CrossRefGoogle Scholar
Fritz, S.C., Baker, P.A., Seltzer, G.O., Ballantyne, A., Tapia, P., Cheng, H., Edwards, R.L., 2007. Quaternary glaciation and hydrologic variation in the South American tropics as reconstructed from the Lake Titicaca drilling project. Quaternary Research 68, 410420.CrossRefGoogle Scholar
Fritz, S.C., Baker, P.A, Tapia, P., Spanbauer, T., Westover, K., 2012. Evolution of the Lake Titicaca basin and its diatom flora over the last ~370,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 317, 93103.CrossRefGoogle Scholar
Hammer, O., Harper, D.A.T., Ryan, P.D., 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 19.Google Scholar
Hogg, A.G., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., Guilderson, T.P., Heaton, T.J., et al. 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55, 18891903.CrossRefGoogle Scholar
Kolata, A.L. (Ed.) 1996. Tiwanaku and Its Hinterland: Archaeology and Paleoecology of an Andean Civilization. Vol. 1, Agroecology. Smithsonian Institution Press, Washington, DC.Google Scholar
Krammer, K., Lange-Bertalot, H., 1986. Bacillariophyceae. Susswasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, Germany.Google Scholar
Metzeltin, D., Lange-Bertalot, H., 1998. Tropische diatomeen in Südamerika I: 700 überwiegend wenig bekannte oder neue taxa repräsentativ als elemente der neotropischen flora. Iconographia Diatomologica 5. Koeltz Scientific Books, Koenigstein, Germany.Google Scholar
Metzeltin, D., Lange-Bertalot, H., 2007. Tropical Diatoms of South America, II: Special Remarks on Biogeographic Disjunction. Iconographia Diatomologica 18. Koeltz Scientific Books, Koenigstein, Germany.Google Scholar
Metzeltin, D., Lange-Bertalot, H., Garcia-Rodriguez, F., 2005. Diatoms of Uruguay. Iconographia Diatomologica 15. Koeltz Scientific Books, Koenigstein, Germany.Google Scholar
Moore, K., Bruno, M., Capriles, J., Hastorf, C., 2010. Integrated contextual approaches to understanding past activities using plant and animal remains from Kala Uyuni, Lake Titicaca, Bolivia. In: VanDerwarker, A.M., Peres, T.M. (Eds.), Integrating Zooarchaeology and Paleoethnobotany. Springer, New York, pp. 173203.CrossRefGoogle Scholar
Mourguiart, P., Corrège, T., Wirrmann, D., Argollo, J., Montenegro, M., Pourchet, M., Carbonel, P., 1998. Holocene palaeohydrology of Lake Titicaca estimated from an ostracod-based transfer function. Palaeogeography, Palaeoclimatology, Palaeoecology 143, 5172.CrossRefGoogle Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Roche, M.A., Bourges, J., Cortes, J., Mattos, R., 1992. Climatology and hydrology of the Lake Titicaca basin. In: Dejoux, C., Iltis, A. (Eds.), Lake Titicaca: A Synthesis of Limnological Knowledge. Monographiae Biologicae 68. Springer, Dordrecht, the Netherlands, pp. 6388.CrossRefGoogle Scholar
Servant-Vildary, S., 1992. Phytoplankton: the diatoms. In: Dejoux, C., Iltis, A. (Eds.), Lake Titicaca: A Synthesis of Limnological Knowledge. Monographiae Biologicae 68. Springer, Dordrecht, the Netherlands, pp. 163175.CrossRefGoogle Scholar
Servant-Vildary, S., Roux, M., 1990. Multivariate analysis of diatoms and water chemistry in Bolivian saline lakes. In: Comín, F.A., Northcote, T.G. (Eds.), Saline Lakes: Proceedings of the Fourth International Symposium on Athalassic (Inland) Saline Lakes, Held at Banyoles, Spain, May 1988. Springer, Dordrecht, the Netherlands, pp. 267290.CrossRefGoogle Scholar
Stanish, C., 2003. Ancient Titicaca: The Evolution of Complex Society in Southern Peru and Northern Bolivia. University of California Press, Berkeley.Google Scholar
Stuiver, M., Reimer, P.J., 1986. A computer program for radiocarbon age calibration. Radiocarbon 28, 10221030.CrossRefGoogle Scholar
Sylvestre, F., 2002. A high-resolution diatom reconstruction between 21,000 and 17,4000 14C yr BP from the southern Bolivian Altiplano (18–23°S). Journal of Paleolimnology 27, 4557.CrossRefGoogle Scholar
Talbi, A., Coudrain, A., Ribstein, P., Pouyaud, B., 1999. Calcul de la pluie sur le bassin versant du lac Titicaca pendant l’Holocène. Comptes Rendus de l’Académie des Sciences, Series IIA: Earth and Planetary Science 329, 197203.Google Scholar
Tapia, P.M., Fritz, S.C., Baker, P.A., Seltzer, G.O., Dunbar, R.B., 2003. A Late Quaternary diatom record of tropical climatic history from Lake Titicaca (Peru and Bolivia). Palaeogeography, Palaeoclimatology, Palaeoecology 194, 139164.CrossRefGoogle Scholar
Wirrmann, D., 1992. Geomorphology and sedimentation: morphology and bathymetry. In: Dejoux, C., Iltis, A. (Eds.), Lake Titicaca: A Synthesis of Limnological Knowledge, Monographiae Biologicae 68. Springer, Dordrecht, the Netherlands, pp. 1622.CrossRefGoogle Scholar
Wirrmann, D., De Oliveira Almeida, L.F., 1987. Low Holocene level (7700 to 3650 years ago) of Lake Titicaca (Bolivia). Palaeogeography, Palaeoclimatology, Palaeoecology 59, 315323.CrossRefGoogle Scholar
Wirrmann, D., Mourguiart, P., 1995. Late Quaternary spatio-temporal limnological variations in the Altiplano of Bolivia and Peru. Quaternary Research 43, 344354.CrossRefGoogle Scholar
Wirrmann, D., Mourguiart, P., de Oliveira Almeida, L.F., 1988. Holocene sedimentology and ostracods distribution in Lake Titicaca–paleohydrological interpretations. Quaternary of South America and Antarctic Peninsula 6, 89127.Google Scholar
Wirrmann, D., Ybert, J.-P., Mourguiart, P., 1992. Paleohydrology. In: Dejoux, C., Iltis, A. (Eds.), Lake Titicaca: A Synthesis of Limnological Knowledge. Monographiae Biologicae 68. Springer, Dordrecht, the Netherlands, pp. 4062.CrossRefGoogle Scholar