Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T03:37:22.010Z Has data issue: false hasContentIssue false

Structure and function of the constant regions of immunoglobulins

Published online by Cambridge University Press:  17 March 2009

D. Beale
Affiliation:
Agricultural Research Council, Institute of Animal Physiology, Babraham, Cambridge, U.K.
A. Feinstein
Affiliation:
Agricultural Research Council, Institute of Animal Physiology, Babraham, Cambridge, U.K.

Extract

Immunoglobulins are somewhat unusual in that they are biologically active proteins capable of carrying out several different functions. Thus, they can bind specifically with antigen, activate the complement system, mediate many cytotropic reactions, and act as antigen receptors on lymphocyte membranes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adetugbo, K., Poskus, E., Svasti, J. & Milstein, C. (1975). Mouse immunoglobulin subclasses: cyanogen bromide fragments and partial sequence of a γI chain. Eur. J. Biochem. 56, 503–19.CrossRefGoogle Scholar
Appella, E. & Ein, D. (1967). Two types of lambda polypeptide chains in human immunoglobulins based on an amino acid substitution at position 190. Proc. natn. Acad. Sci. U.S.A. 57, 1449–54.CrossRefGoogle Scholar
Baenziger, J. & Kornfeld, S. (1974). Structure of the carbohydrate units of IgA1 immunoglobulin. II. Structure of the O glycosidically linked oligosaccharide units. J. biol. Chem. 249, 7270–81.CrossRefGoogle ScholarPubMed
Baglioni, C., Zonta, L. A., Coili, D. & Carbonara, A. (1966). Allelic antigenic factor Inv(a) of the light chains of human immunoglobulins: chemical basis. Science N.Y. 152, 1517–19.CrossRefGoogle ScholarPubMed
Beale, D. (1974 a). A porcine immunoglobulin Fcμ polymer that has no J-chain. Biochim. biophys. Acta 351, 1320.CrossRefGoogle ScholarPubMed
Beale, D. (1974 b). Fragmentation and reduction of porcine 19S immunoglobulin M. FEBS Lett. 44, 236–39.CrossRefGoogle Scholar
Beale, D. (1974 c). Fragmentation and reduction of porcine 19S immunoglobulin M. In Symposium on Antibody Structure and Molecular Immunology (ed. Askonas, A. B. and Gergely, J.), pp. 8792. 9th FEBS Meeting, Budapest.Google Scholar
Beale, D., Dunham, D. G. & Kent, C. M. (1976). Complement fixation by porcine IgM and its enzymic fragments. FEBS Lett. 62, 105–7.CrossRefGoogle Scholar
Beale, D. & Feinstein, A. (1969). Studies on the reduction of a human 19S immunoglobulin M. Biochem. J. 112, 187–94.CrossRefGoogle ScholarPubMed
Beale, D. & Feinstein, A. (1970). Evidence for C-terminal intra-subunit disuiphide bridges between immunoglobulin M heavy chains. FEBS Lett. 7, 175–6.CrossRefGoogle ScholarPubMed
Bennich, H. & Bahr-Lindström, H. Von (1974). Structure of immunoglobulin E (IgE). Prog. Immunol. (II) I, 4958. Ed. Brent, L. and Holborow, J.. Amsterdam: North-Holland.Google Scholar
Bennich, H., Natvig, J. B. & Turner, M. W. (1974). The Cγ3 homology region in human IgG subclasses and allotypes. I. Amino acid composition and end group analysis of pFc' fragments. Scand. J. Immunol. 3, 107–15.CrossRefGoogle Scholar
Björk, I., Karlsson, F. H. & Berggard, I. (1971). Independent folding of the variable and constant halves of a lambda immunoglobulin light chain. Proc. natn. Acad. Sci. U.S.A. 68, 1707–10.CrossRefGoogle ScholarPubMed
Bourgois, A., Fougereau, M. & Rocca-Serra, J. (1974). Determination of the primary structure of a mouse IgG 2a immunoglobulin: amino acid sequence of the Fc fragment. Eur. J. Biochem. 43, 423–35.Google Scholar
Brown, J. C. & Koshland, M. E. (1975). Activation of antibody Fc function by antigen-induced conformational changes. Proc. natn. Acad. Sci. U.S.A. 72, 5111–15.CrossRefGoogle ScholarPubMed
Capra, J. D. & Kehoe, M. J. (1975). Hypervariable regions, idiotypy, and the antibody combining site. Adv. Immun. 20, 140.CrossRefGoogle ScholarPubMed
Cathou, R. E. & Dorrington, K. J. (1974). Structure and function of immunoglobulins. In Biological Macromolecules – Subunits in Biological Systems (ed. Timasheff, S. N. and Fasman, G. D.). New York: Dekker.Google Scholar
Cohen, S. & Milstein, C. (1967). Structure and biological properties of immunoglobulins. Adv. Immun. 7, 189.CrossRefGoogle ScholarPubMed
Colman, P. M., Deisenhofer, J., Huber, R. & Palm, W. (1976). Structure of the human antibody molecule Kol (Immunoglobulin G1): An electron density map at 5 Å resolution. J. molec. Biol. 100, 257–82.Google Scholar
Colman, P. M., Epp, O., Fehlhammer, H., Bode, W., Schiffer, M., Lattman, E. E., Jones, T. A. & Palm, W. (1974). X-ray studies on antibody fragments. FEBS Lett. 44, 194–9.CrossRefGoogle ScholarPubMed
Colomb, M. & Porter, R. R. (1975). Characterization of a plasmin-digest fragment of rabbit immunoglobulin gamma that binds antigen and complement. Biochem. J. 145, 177–83.Google Scholar
Connell, G. E. & Porter, R. R. (1971). A new enzymic fragment (Facb) of rabbit immunoglobulin G. Biochem J. 124, 53P.Google Scholar
Croft, L. R. (1974). Handbook of Protein Sequences. Oxford: Joynson– Bruvvers.Google Scholar
Cunningham, B. A., 1974 β-2 Microglobulin: An immunoglobulin domain associated with cell surfaces. Prog. Immunol. (II) 1, 512. Ed. Brent, L. and Holborow, J.. Amsterdam: North-Holland.Google Scholar
Davies, R. D., Padlan, E. A. & Segal, D. M. (1975 a). Three-dimensional structure of immunoglobulins. A. Rev. Biochem. 44, 639–67.Google Scholar
Davies, R. D., Padlan, E. A. & Segal, D. M. (1975 b). Immunoglobulin structures at high resolution. In Contemporary Topics in Molecular Immunology 4, 127–55. Ed. Inman, F. P. and Mandy, W. J., New York, London: Plenum.CrossRefGoogle Scholar
Dayhoff, M. O. (1972). Atlas of Protein Sequence and Structure, vol. 5. National Biomedial Research Foundation, Washington.Google Scholar
Deisenhofer, J., Colman, P. M., Huber, R., Haupt, H. & Schwick, G. (1976). Crystallographic studies of a human Fc fragment. I. An electron density map at 4 Å resolution and a partial model. Hoppe-Seyler's Z. physiol. Chem. 357, 435–45.CrossRefGoogle Scholar
Dorrington, K. J. & Painter, R. H. (1974). Functional domains of immunoglobulin G. Prog. Immunol. (II) I, 7584. Ed. Brent, L. and Holborow, J.. Amsterdam: North-Holland.Google Scholar
Dorrington, K. J., Bennich, H. & Turner, M. W. (1972). Conformational studies on subfragments from the Fc region of human immunoglobulin G. Biochem. biophys. Res. Comm. 47, 512–16.CrossRefGoogle ScholarPubMed
Edelman, G. M. (1971). Antibody structure. Ann. N.Y. Acad. Sci. U.S.A. 190, 525.CrossRefGoogle ScholarPubMed
Edelman, G. M., Cunningham, B. A., Gall, W. E., Gottlieb, P. D., Rutishauser, U. & Waxdal, M. J. (1969). The covalent structure of an entire γG immunoglobulin molecule. Proc. natn. Acad. Sci. U.S.A. 63,7885.CrossRefGoogle ScholarPubMed
Edelman, G. M. & Gall, W. E. (1969). The antibody problem. A. Rev. Biochem. 38, 415–66.Google Scholar
Edmundson, A. B., Ely, K. R., Abola, E. E., Schiffer, M. & Panagiotopoulos, N. (1975). Rotational allomerism and divergent evolution of domains in immunoglobulin light chains. Biochemistry, N.Y. 14,3953–61.Google Scholar
Edmundson, A. B., Ely, K. R., Girling, R. L., Abola, E. E., Schiffer, M. & Westholm, F. A. (1974). Structure and binding properties of a λ-type Bence Jones dimer. Prog. Immunol. (II) I, 103–13. Ed. Brent, L. and Holborrow, J.. Amsterdam: North-Holland.Google Scholar
Edmundson, A. B., Wood, M. K., Schiffer, M., Hardman, K. D., Ainsworth, C. F., Ely, K. R. & Deutsch, H. F. (1970). A crystallographic investigation of a human IgG immunoglobulin. J. biol. Chem. 245, 2763–4.Google Scholar
Egorov, A. M., Chernyak, V.Ya., Dunaevsky, Ya. E., Gavrilova, E. M. & Moiseev, V. L. (1971). Reversible dissociation of reduced subunits of human γM-globulins into 5S components. Immunochemistry 8, 1157–63.CrossRefGoogle Scholar
Ellerson, J. R., Yasmeen, D., Painter, R. H. & Dorrington, K. J. (1972). A fragment corresponding to the CH2 region of immunoglobulin G (IgG) with complement fixing activity. FEBS Lett. 24, 318–22.Google Scholar
Epp, O., Colman, P., Fehlhammer, H., Bode, W., Schiffer, M., Huber, R. & Palm, W. (1974), Crystal and molecular structure of a dimer composed of the variable portions of the Bence Jones protein REI. Eur. J. Biochem. 45, 513–24.CrossRefGoogle ScholarPubMed
Epp, O., Lattman, E. E., Schiffer, M., Huber, K. & Palm, W. (1975). The molecular structure of a dimer composed of the variable portions of the Bence Jones protein REI refined at 2·0 Å resolution. Biochemistry, N. Y. 14, 4943–52.CrossRefGoogle ScholarPubMed
Feinstein, A.A model of the immunoglobulin M (IgM) molecule. J. Physiol. 242, 32–4P.Google Scholar
Feinstein, A. (1974). Conclusions: An 1gM Model. Prog. Immunol. (II) I, 115–16. Ed. Brent, L. and Holborow, J.. Amsterdam: North-Holland.Google Scholar
Feinstein, A. (1975). The three-dimensional structure of immunoglobulins. In The Immune System, vol. 1 (ed. Hobart, M. and McConnell, I.), pp. 2441. Oxford: Blackwell.Google Scholar
Feinstein, A., Munn, E. A. & Richardson, N. E. (1971). The threedimensional conformation of γM and γA globulin molecules. Ann. N.Y. Acad. Sci. U.S.A. 190, 104–21.Google Scholar
Feinstein, A. & Rowe, A. J. (1965). Molecular mechanism of formation of an antigen antibody complex. Nature, Lond. 205, 147–9.CrossRefGoogle ScholarPubMed
Franklin, E. C. & Frangione, B (1975). Structural variants of human, and murine immunoglobulins. In Contemporary Topics in Molecular Immunology 4, 89126. Ed. Inman, F. P. and Mandy, W. J.. New York, London: Plenum.CrossRefGoogle Scholar
Ghose, A. C. & Jirgensons, B. (1971). Circular dichroism studies on the variable and constant halves of kappa-type Bence Jones proteins. Biochim. biophys. Acta 251, 1420.Google Scholar
Goldstein, D. J., Humphrey, R. L. & Poljak, R. (1968). Human Fc fragment: crystallographic evidence for two equivalent subunits.J. molec. Biol. 35, 247–9.CrossRefGoogle ScholarPubMed
Green, N. M. (1969). Electron microscopy of immunoglobulins. Adv. Immun. 11, 130.Google Scholar
Goers, J. W., Schumaker, V. N., Glovsky, M. M., Rebek, J. & Müllereberhard, H. J. (1975). Complement activation by a univalent hapten–antibody complex. J. biol. Chem. 250, 4918–25.CrossRefGoogle ScholarPubMed
Gutman, G. A., Loh, E. & Hood, L. (1975). Structure and regulation of immunoglobulins: kappa allotypes in the rat have multiple amino acid differences in the constant region. Proc. natn. Acad. Sci. U.S.A. 72, 5046–50.CrossRefGoogle ScholarPubMed
Hess, M., Hilschmann, N., Rivat, L., Rivol, C. & Ropartz, C. (1971). Isotypes in human immunoglobulin λ-chains. Nature (New Biol.) 234, 5861.CrossRefGoogle ScholarPubMed
Hill, R. L., Lebovitz, H. E., Fellows, R. E. & Delaney, R. (1967). The evolution of immunoglobulins as reflected by the amino acid sequence studies of rabbit Fc fragment. In Gamma Globulins: Structure and Biosynthesis (ed. Killander, J.), pp. 109–27. Proc. Third Nobel Symp., Stockholm.Google Scholar
Hochman, J., Inbar, D. & Givol, D. (1973). An active antibody fragment (Fv) composed of the variable portions of heavy and light chains. Biochemistry, N.Y. 12, 1130–5.Google Scholar
Hurst, M. M., Volanakis, J. E., Hester, R. B., Stroud, R. M. & Bennett, J. C. (1974). The structural basis for binding of complement by immunoglobulin. M. J. exp. Med. 140, 1117–21.CrossRefGoogle ScholarPubMed
Hyslop, N. E., Dourmashkin, R. R., Green, N. M. & Porter, R. R. (1970). The fixation of complement and the activated first component. (CI) of complement by complexes formed between antibody and divalent hapten. J. exp. Med. 131, 783802.CrossRefGoogle Scholar
Inman, F. P. & Mestecky, J. (1975). The J chain of polymeric immunoglobulins. In Contemporary Topics in Immunology, 3, 111–42. Ed. Inman, F. P. and Mandy, W. J.. New York, London: Plenum.Google Scholar
Isenman, D. E., Dorrington, K. J. & Painter, R. H. (1975). The structure and function of immunoglobulin domains. II. The importance of interchain disuiphide bonds and the possible role of molecular flexibility in the interaction between immunoglobulin G and complement. J. Immun. 114, 1726–9.CrossRefGoogle ScholarPubMed
Isenman, D. E., Painter, R. H. & Dorrington, K. J. (1975). The structure and function of immunoglobulin. The role of the intra-chain disuiphide bond. Proc. natn. Acad. Sci. U.S.A. 72, 548–52.Google Scholar
Karlsson, F. A., Bjork, I. & Berggard, I. (1972). Recovery of the native conformations of the variable and constant halves of an immunoglobulin light chain upon renaturation from the linear random coil state. Immunochemistry 9, 1129–38.CrossRefGoogle ScholarPubMed
Kehoe, J. M. & Fougereau, M. (1969). Immunoglobulin peptide with complement fixing activity. Nature, Lond. 224, 1212–13.CrossRefGoogle ScholarPubMed
Kindt, T. J. (1975). Rabbit immunoglobulin allotypes: structure, immunology and genetics. Adv. Immun. 21, 3586.CrossRefGoogle ScholarPubMed
Koshland, M. E. (1975). Structure and function of J. chain. Adv. Immun. 20, 4169.CrossRefGoogle ScholarPubMed
Kratzin, H., Altevogt, P., Ruban, E., Kortt, A., Staroscik, K. & Hilschmann, N. (1975). Die Primärstruktur eines Monoklonalen IgA-Immunoglobulins (IgA Tro.). II. Die Aminosäuresequenz der H-Kette Subgruppe III, Struktur des gesamten IgA-Moleküls. Hoppe Seyler's Z. Physiol. Chem. 356, 1337–42.Google Scholar
Low, T. L. K., Liu, V. Y. & Putnam, F. W. (1976). Structure, function and evolutionary relationships of the Fc domains of human immunoglobulins A, G, M and E. Science N.Y. 191, 390–1.CrossRefGoogle Scholar
MacLennan, I. C. M., Connell, G. E. & Gotch, F. M. (1974) Effector activating determinants on IgG. II. Differentiation of the combining sites for CIa from those for cytotoxic K cells and neutrophils by plasmin digestion of rabbit IgG. Immunology 26, 303–10.Google Scholar
Miekka, S. I. & Deutsch, H. F. (1970). The primary structure of a tetradecapeptide containing the cysteine residue linking γ M-globulin subunits. J. biol. Chem. 245, 5534–44.Google Scholar
Metzger, H. (1970). Structure and function of γM macroglobulins. Adv. Immun. 12, 57108.Google Scholar
Metzger, H. (1974) Effect of antigen binding on the properties of antibody. Adv. Immun. 18, 169203.Google Scholar
Milstein, C. (1966). Variations in amino acid sequence near the disuiphide bridges of Bence Jones proteins. Nature, Lond. 209, 370–3.CrossRefGoogle ScholarPubMed
Milstein, C., Adetugbo, K., Cowan, N. J. & Secher, D. S. (1974). Clonal variants of myeloma cells. Prog. Immunol. (II) I, 157–68. Ed. Brent, L. and Holborow, J.. Amsterdam: North Holland.Google Scholar
Milstein, C., Frangione, B. & Pink, J. R. L. (1967). Studies on the variability of immunoglobulin sequence. Cold Spring Harb. Symp. quant. Biol. 32, 31–6.Google Scholar
Milstein, C. P., Richardson, N. E., Deverson, E. V. & Feinstein, A. (1975) Interchain disulphide bridges of mouse immunoglobulin M. Biochem. J. 151, 615–24.Google Scholar
Minta, J. O. & Painter, R. H. (1972). A re-examination of the ability of pFc' and Fc' to participate in passive cutaneous anaphylaxis. Immunochem. 9, 1041–8.Google Scholar
Natvig, J. B. & Kunkel, H. G. (1973). Human immunoglobulins: classes, subclasses, genetic variants, and idiotypes. Adv. Immun. 16, 159.Google Scholar
Nezlin, R. S. (1972). Structure and Biosynthesis of Antibodies. Moscow: Nauka.Google Scholar
Nisonoff, A., Wissler, F. C., Lipman, L. N. & Woernley, D. L. (1960). Separation of univalent fragments from bivalent antibody molecule by reduction of disuiphide bonds. Archs Biochem. Biophys. 89, 230–44.Google Scholar
Novotny, J. & Franek, F. (1975). Different degrees of interspecies homology in immunoglobulin λ chain constant domain correlated with three- dimensional structure. Nature, Lond. 258, 641–3.Google Scholar
Okafor, G. O., Turner, M. W. & Hay, F. C. (1974). Localisation of monocytic binding site of human immunoglobulin G. Nature, Lond. 248, 228–30.Google Scholar
Padlan, E. O. & Davies, D. R. (1975). Variability of three-dimensional structure in immunoglobulins. Proc. natn. Acad. Sci. U.S.A. 72, 819–23.CrossRefGoogle ScholarPubMed
Parkhouse, R. M. E. (1975). Non-covalent association of IgM subunits produced by reduction and alkylation. Immunology 27, 1063–71.Google Scholar
Percy, M. E. & Dorrington, K. J. (1974). An atypical human immunoglobulin G with deletions in both heavy and light chains: studies of the conformation and the in vitro recombination of the isolated subunits. Can. J. Biochem. Physiol. 52, 610–19.Google ScholarPubMed
Plaut, A. G., Cohen, S. & Tomasi, T. B. (1972). Immunoglobulin M: fixation of human complement by the Fc fragment. Science, N. Y. 176, 55–6.CrossRefGoogle ScholarPubMed
Plaut, A. G. & Tomasi, T. B. Jr. (1970). Immunoglobulin M pentameric Fcμ fragments released by trypsin at higher temperatures. Proc. natn. Acad. Sci. U.S.A. 65, 318–22.CrossRefGoogle ScholarPubMed
Poljak, R. J. (1975 a). Three-dimensional structure, function and genetic control of immunoglobulins. Nature, Lond. 256, 373–6.Google Scholar
Poljak, R. J. (1975 b). X-ray diffraction studies of immunoglobulins. Adv. Immun. 21, 133.CrossRefGoogle ScholarPubMed
Poljak, R. J., Amzel, L. M., Avey, H. P., Chen, B. L., Phizackerley, R. P. & Saul, F. (1973). Three-dimensional structure of the Fab' fragment of a human immunoglobulin at 2·8 Å resolution. Proc. natn. Acad. Sci. U.S.A. 70, 3305–10.CrossRefGoogle ScholarPubMed
Poljak, R. J., Amzel, L. M., Chen, B. L., Phizackerley, R. P. & Saul, F.(1974). The three-dimensional structure of the Fab fragment of a human myeloma immunoglobulin at 2·0 Å resolution. Proc. natn. Acad. Sci. U.S.A. 71, 3440–4.Google Scholar
Porter, R. R. (1959) The hydrolysis of rabbit λ-globulin, and antibodies with crystalline papain. Biochem. J. 73, 119–26.Google Scholar
Postingl, H., Hess, M., Langer, B., Steinmetz-Kayne, M. & Hilschmann, N. (1967). Über einen Aminosäureaustausch im konstanten Teil eines Bence JonesProteinsvom λ-Typ. Hoppe-Seyler's Z. physiol. Chem. 348, 1213–14.Google Scholar
Poulik, M. D. & Reisfeld, R. A. (1975). β2-Microglobulins. In Contemporary Topics in Molecular Immunology, vol. 4, pp. 157204. Ed. Inman, F. P. and Mandy, W. J.. New York, London: Plenum.CrossRefGoogle Scholar
Press, E. M. (1975). Fixation of the first component of complement by immune complexes: effect of reduction and fragmentation of antibody. Biochem. J. 149, 285–8.Google Scholar
Putnam, F. W., Florent, C., Paul, C., Shinoda, T. & Shimizu, A. (1973). Complete amino acid sequence of the Mu heavy chain of a human 1gM immunoglobulin. Science, N.Y. 182, 287–91.Google Scholar
Putnam, F. W. (1974). Comparative structural study of human 1gM, IgA and IgG immunoglobulins. Prog. Immunol. (II), I, 2537. Ed. Brent, L. and Holborow, J.. Amsterdam: North-Holland.Google Scholar
Ramasamy, R., Richardson, N. E. & Feinstein, A. (1976). The specificity of the Fc receptor on murine lymphocytes for immunoglobulins of the IgG and 1gM class. Immunology (in the Press).Google Scholar
Ramasamy, R., Secher, D. S. & Adetugbo, K. (1975). CH3 domain of IgG as a binding site to Fc receptors on mouse lymphocytes. Nature, Lond. 253, 656.Google Scholar
Reid, K. B. M. (1971). Complement fixation by the F(ab')2 fragment of pepsin-treated rabbit antibody. Immunology 20, 649–58.Google Scholar
Reid, K. B. M. & Porter, R. R. (1975). The structure and mechanism of activation of the first component of complement. In Contemporary Topics in Molecular Immunology 4, 122. Ed. Inman, F. P. and Mandy, W. J.. New York, London: Plenum.Google Scholar
Rocca-Serra, J., Milili, M. & Fougereau, M. (1975). Determination of the primary structure of a mouse IgG 2a immunoglobulin: amino acid sequence of the H4 cyanogen-bromide fragment. Eur. J. Biochem. 59, 511–23.Google Scholar
Sarma, V. R., Silverton, E. W., Davies, D. R. & Terry, W. D. (1971). The three-dimensional structure at 6 Å resolution of a human γG1 immunoglobulin molecule. J. biol. Chem. 246, 3753–9.Google Scholar
Schiffer, M., Girling, R. L., Ely, K. R. & Edmundson, A. B. (1973). Structure of a λ-type Bence Jones protein at 3·5 Å resolution. Biochemistry, N.Y. 23, 4620–31.CrossRefGoogle Scholar
Schlessinger, J., Steinberg, I. Z., Givol, D., Hochman, J. & Pecht, I. 1975). Antigen-induced conformational changes in antibodies and their Fab' fragments studied by circular polarization of fluorescence. Proc. natn. Acad. Sci. U.S.A. 72, 2775–9.Google Scholar
Segal, D. M., Padlan, E. A., Cohen, G. H., Rudikoff, S., Potter, M. & Davies, D. R. (1974). The three-dimensional structure of a phosphoryl choline-binding mouse immunoglobulin Fab and the nature of the antigen binding site. Proc. natn. Acad. Sci. U.S.A. 71, 4298–302.Google Scholar
Steinberg, A. G., Milstein, C. P., McLaughlin, C. L. & Solomon, A. (1974). Structural studies of an Inv. (1, –2) Kappa light chain. Immunogenetics I, 108–17.CrossRefGoogle Scholar
Strosberg, A. D. (1976). (Unpublished results.)Google Scholar
Smith, G. P. (1973). The Variation and Adaptive Expression of Antibodies. Harvard University Press.CrossRefGoogle Scholar
Suzuki, T. (1975). Structural studies of a human immunoglobulin M: localization of a third light chain. Immunochemistry 12, 751–63.Google Scholar
Tomasi, T. B. (1973). Production of a non-covalently bonded pentamer of immunoglobulin M. Proc. natn. Acad. Sci. U.S.A. 70, 3410–14.Google Scholar
Tomasi, T. B. & Hauptman, S. (1974). Modulation of the assembly of immunoglobulin subunits by J-chain. In The Immunoglobulin A System, pp. 111–20. Ed. Mestecky, J. and Lawton, A. R.. New York: Plenum.CrossRefGoogle Scholar
Tracy, D. E. & Cebra, J. J. (1974). Primary structure of the CH2 homology region from guinea pig IgG2 antibodies. Biochemistry, N. Y. 13 4796–803.Google Scholar
Trischmann, T. M. & Cebra, J. J. (1974). Primary structure of the CH3 homology region from guinea pig IgG2 antibodies. Biochemistry, N.Y. 13, 4804–11.Google Scholar
Turner, M. W. & Bennich, H. (1968). Subfragments from the Fc fragment of human immunoglobulin G. Biochem. J. 107, 171–8.Google Scholar
Utsumi, S. (1969). Stepwise cleavage of rabbit immunoglobulin G by papain and isolation of four types of biologically active Fc fragments. Biochem. J. 112, 343–55.Google Scholar
Waldman, T. A., Strober, W. & Blaese, R. M. (1971). Metabolism of immunoglobulins. Prog. Immunol. (I), pp. 891903. Ed. Amos, B.. Academic Press.CrossRefGoogle Scholar
Watanabe, S., Barnikol, H. U., Horn, J., Bertram, J. & Hilschmann, N. (1973). Die Primärstruktur eines Monoklonalen 1gM – Immunoglobulins (Makroglobulin Gal). II. Die aminosäure Sequenz der H-Kette (μ-Typ, Subgruppe H-Ill), Struktur de gesamten IgM-Moleküle. Hoppe-Seyler's Z. physiol. Chem. 354, 1505–9.Google Scholar
Wolfenstein-Todel, C., Prelli, F., Frangione, B. & Franklin, F. C. (1973). Immunoglobulin A. Arrangement of disulphide bridges in the ‘hinge region’ of an immunoglobulin At human myeloma protein. Biochemistry, N. Y. 12, 5795–97.Google Scholar
Yasmeen, D., Ellerson, J. R., Dorrington, R. J. & Painter, R. H. (1973). Evidence for the domain hypothesis: Location of the site of cytophilic activity toward guinea pig macrophages in the CH3 homology region of human immunoglobulin G. J. Immun. 110, 1706–9.Google Scholar
Zikan, J. & Miler, I. (1974). Pepsin digestion of pig 1gM. Immunochemistry 11, 115–18.Google Scholar