Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T03:52:45.618Z Has data issue: false hasContentIssue false

Quiescent Non-thermal Radio Emission from Stellar Systems

Published online by Cambridge University Press:  25 April 2016

Michelle C. Storey
Affiliation:
Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, NSW 2006, Australia. michelle@physics.usyd.edu.au
R. G. Hewitt
Affiliation:
Department of Theoretical Physics, School of Physics, University of Sydney, NSW 2006, Australia

Abstract

Non-thermal radio emission has been detected from dMe stars, RS CVn binaries and W T Tauri stars. Polarisation and intensity measurements of the quiescent (i.e. non-flaring) emission indicate that the emission is gyrosynchrotron emission from mildly relativistic electrons spiralling in a magnetic field. A three-dimensional dipole magnetic field model for the stellar field is presented and the quiescent gyrosynchrotron emission from such a model is calculated and compared with observations. The model can account for many phenomenological features of quiescent emission. Quantitative comparisons of model results with observations indicate that the electron distribution in the emission region may be a magnetic mirroring distribution.

Type
Galactic and Stellar
Copyright
Copyright © Astronomical Society of Australia 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carr, T. D., Desch, M. D., & Alexander, J. K., 1983, in Physics of the Jovian Magnetosphere, ed. Dessier, A. J. (Cambridge Univ. Press), 226 CrossRefGoogle Scholar
Dulk, G. A., 1985, ARA&A, 23, 169 Google Scholar
Jackson, P. D., Kundu, M. R., & White, S. M., 1989, A&A, 210, 284 Google Scholar
Jones, K. L., Stewart, R. T., Nelson, G. J., & Duncan, A. R., 1994, MNRAS, 269, 1145 CrossRefGoogle Scholar
Kuncic, Z., & Robinson, P. A., 1993, PASA, 10, 278 CrossRefGoogle Scholar
Kundu, M. R., Jackson, P. D., White, S. M., & Melozzi, M., 1987, ApJ, 312, 822 CrossRefGoogle Scholar
Lestrade, J. F., Mutel, R. L., Preston, R. A., & Phillips, R.B., 1985, in Radio Stars, ed. Hjellming, R. J. and Gibson, D. M. (Dordrecht: Reidel) 275 Google Scholar
Melrose, D. B., 1980, Plasma Astrophysics: Nonthermal Processes in Diffuse Magnetized Plasmas, Vol. 1 (London: Gordon and Breach)Google Scholar
Melrose, D.B., & Dulk, G. A., 1982, ApJ, 259, 844 Google Scholar
Morris, D. H., Mutel, R. L., & Su, B. 1990, ApJ, 362, 299 CrossRefGoogle Scholar
Mutel, R. L., Morris, D. H., Doiron, D. J., & Lestrade, J.-F. 1987, AJ, 93, 1220 Google Scholar
Parker, E. N., 1957, Phys. Rev., 107, 924 CrossRefGoogle Scholar
Phillips, R.B., Lonsdale, C. J., & Feigelson, E. D., 1991, ApJ, 382, 261 Google Scholar
Robinson, P. A., & Melrose, D. B., 1984, Aust. J. Phys., 37, 675 Google Scholar
Saar, S. H., 1990, in Solar Photosphere: Structure, Convection and Magnetic Fields, ed. Stenflo, J. O. (Dordrecht: Reidel), 427 Google Scholar
Vogt, S. S., 1980, ApJ, 240, 567 CrossRefGoogle Scholar
White, S. M., & Franciosini, E., 1995, ApJ, 444, 342 Google Scholar
White, S. M., Kundu, M. R., & Jackson, P. D., 1989, A&A, 225, 112 Google Scholar
White, S. M., Lim, J., & Kundu, M. R., 1994, ApJ, 422, 293 Google Scholar
White, S. M., Pallavicini, R., & Kundu, M. R., 1992, A&A, 259, 149 Google Scholar