Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T12:48:48.578Z Has data issue: false hasContentIssue false

Neutrinos from Relativistic Outflows of Fast Spinning Magnetars

Published online by Cambridge University Press:  05 March 2013

Qinghuan Luo*
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia. Email: luo@physics.usyd.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Pulsars may be born with a short rotation period of milliseconds with the magnetic field amplified through dynamo processes up to ∼1015–1016 G. Such millisecond magnetars spin down rapidly, emitting bursts of high-energy neutrinos and gamma rays. Specifically, acceleration of ions in both the polar gap (as in a normal pulsar) and the relativistic magnetar wind is considered. In both cases ions can be accelerated to ultra-high energies and these energetic ions can lead to production of high-energy neutrinos and gamma rays through interaction with thermal radiation from the hot neutron star or the heated inner boundary region of the stellar envelope as the result of the deposition of energy by the magnetar wind. The detectability of the neutrino flux by a kilometre-scale neutrino detector such as the planned IceCube neutrino observatory is discussed.

Type
ASA Conference 2004
Copyright
Copyright © Astronomical Society of Australia 2005

References

Arons, J. 1981, ApJ, 248, 1099 Google Scholar
Arons, J. 2003, ApJ, 589, 871 Google Scholar
Arons, J., & Scharlemann, E. 1979, ApJ, 231, 854 CrossRefGoogle Scholar
Beall, J. H., & Bednarek, W. 2002, ApJ, 569, 343 Google Scholar
Blackman, E., & Yi, I. 1998, ApJ, 498, L31 CrossRefGoogle Scholar
Blasi, P., Epstein, R. I., & Olinto, A. V. 2000, ApJ, 533, L123 CrossRefGoogle Scholar
Cheng, K. S., Ho, C., & Ruderman, M. 1986, ApJ, 300, 500 Google Scholar
Contopoulos, I., & Kazanas, D. 2002, ApJ, 566, 336 Google Scholar
Dar, A., Kozlovsky, B., Nussinov, S., & Ramaty, R. 1992, ApJ, 388, 164 Google Scholar
Duncan, R., & Thompson, C. 1992, ApJ, 392, L9 Google Scholar
Gaensler, B. M., et al. 2002, ApJ, 569, 878 Google Scholar
Gonthier, P., Harding, A., Baring, M., Costello, R., & Mercer, C. 2000, ApJ, 540, 907 Google Scholar
Granot, J., & Guetta, A. 2003, PhRvL, 90, 191 102 Google Scholar
Halzen, F., & Hooper, D. 2002, RPPh, 65, 1025 Google Scholar
Harding, A., & Muslimov, A. 1998, ApJ, 508, 328 CrossRefGoogle Scholar
Harding, A., Baring, M., & Gonthier, P. 1997, ApJ, 476, 246 CrossRefGoogle Scholar
Kennel, C. F., & Coroniti, F. V. 1984, ApJ, 283, 694 CrossRefGoogle Scholar
Luo, Q. 2005, AIP proceedings, in pressGoogle Scholar
Lyubarsky, Y., & Kirk, J. 2001, ApJ, 547, 437 Google Scholar
Melatos, A. 2005, in Highlights of Astronomy, Vol. 13, ed. O. Engvold (San Francisco: ASP), in pressGoogle Scholar
Nagataki, S. 2004, ApJ, 600, 883 Google Scholar
Protheroe, R. J., Bednarek, W., & Luo, Q. 1998, APh, 9, 1 Google Scholar
Rees, M., & Mészáros, P. 2000, ApJ, 545, L73 Google Scholar
Romani, R. 1987, ApJ, 313, 718 Google Scholar
Romani, R. 1996, ApJ, 470, 469 Google Scholar
Stecker, F., Done, C., Salamon, M. H., & Sommers, P. 1991, PhRvL, 66, 2697 Google Scholar
Thompson, C. 1994, MNRAS, 270, 480 Google Scholar
Usov, V. 1994, MNRAS, 267, 1035 Google Scholar
Waxman, E., & Bahcall, J. N. 1997, PhRvL, 78, 2292 Google Scholar
Weise, J., & Melrose, D. B. 2002, MNRAS, 329, 115 Google Scholar
Wheeler, J. C., Yi, I., Höflich, P., & Wang, L. 2000, ApJ, 537, 810 Google Scholar
Zhang, B., et al. 2003, ApJ, 595, 346 Google Scholar