Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T09:16:44.077Z Has data issue: false hasContentIssue false

Mapping Martian Atmospheric Pressure with Ground-Based Near Infrared Spectroscopy

Published online by Cambridge University Press:  05 March 2013

Sarah A. Chamberlain*
Affiliation:
Australian Centre for Astrobiology, Macquarie University, NSW 2109, Australia
Jeremy A. Bailey
Affiliation:
Australian Centre for Astrobiology, Macquarie University, NSW 2109, Australia
David Crisp
Affiliation:
Jet Propulsion Laboratory/Caltech, 4800 Oak Grove Dr, Pasadena, CA 91125, USA
*
CCorresponding author. E-mail: schamber@els.mq.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present images of Mars obtained in the 2.0 μm CO2 band with the United Kingdom Infrared Telescope (UKIRT). The images reveal topographic features of the Martian surface that are usually invisible in direct albedo images at visible or IR wavelengths, but agree remarkably well with the topography of the planet as mapped by the MOLA instrument on Mars Global Surveyor. The CO2 band depth is a measure of the absorbing column of CO2 and hence determined primarily by the surface atmospheric pressure. The surface pressure variations are detected with a sensitivity of 4–5 Pa. We compare our data with radiative transfer models and find that the measured CO2 variation with pressure is consistent with the models. We discuss the possibility that similar observations might be used to observe atmospheric pressure changes due to Martian weather systems.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2006

References

Bailey, J. & Prestage, R. P. 1997, SPIE Proc, 3112, 124 CrossRefGoogle Scholar
Barnes, J. R. 1981, JAtS, 38, 225 Google Scholar
Belton, M. J. S. & Hunten, D. M. 1971, Icar, 15, 204 CrossRefGoogle Scholar
Bibring, J. P. et al. 1991, P&SS, 39, 225 Google Scholar
Collins, M., Lewis, S. R., Read, P. L. & Hourdin, F. 1996, Icar, 120, 344 CrossRefGoogle Scholar
Forget, F. et al. 1999, JGRE, 104, 24155 CrossRefGoogle Scholar
Hawarden, T. G. et al. 1998, SPIE Proc, 3352, 52 CrossRefGoogle Scholar
Lemmon, M. T. et al. 2004, Sci, 306, 1753 CrossRefGoogle Scholar
Lewis, S. R. et al. 1999, JGRE, 104, 24177 CrossRefGoogle Scholar
Meadows, V. S. & Crisp, D. 1996, JGRE, 101, 4595 CrossRefGoogle Scholar
Parkinson, T. D. & Hunten, D. M. 1973, Icar, 18, 29 CrossRefGoogle Scholar
Ramsay Howat, S. K. et al. 1998, SPIE Proc, 3354, 456 CrossRefGoogle Scholar
Rothman, L. S. et al. 2003, JQSRT, 82, 5 CrossRefGoogle Scholar
Smith, D. E. et al. 1998, Sci, 279, 1686 CrossRefGoogle Scholar
Smith, M. D. 2006, Second workshop on Mars atmospheric modelling and observations proceedings, Eds Forget, F., Lopez-Valverde, M. A., Desjean, M. C., Huot, J. P., Lefevre, F., Lebonnois, S., Lewis, S. R., Millour, E., Read, P. L. & Wilson, R. J. (LMD, IAA, AOPP, CNES, ESA), 211 Google Scholar
Smith, M. D. et al. 2003, JGRE, 108, 5115 Google Scholar
Stamnes, K. et al. 1988, ApOpt, 27, 2502 Google Scholar
Woszczyk, A. 1971, in IAU Symp., 40, Planetary Atmospheres, Eds Sagan, C. Owen, T. C. & Smith, H. J. (Dordrecht: Reidel), 203 Google Scholar