Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T06:17:29.347Z Has data issue: false hasContentIssue false

P. W. Holland and H. Wainer (Editors). Differential Item Functioning. Hillsdale, N J: Lawrence Erlbaum, 1993.

Review products

P. W. Holland and H. Wainer (Editors). Differential Item Functioning. Hillsdale, N J: Lawrence Erlbaum, 1993.

Published online by Cambridge University Press:  01 January 2025

Gideon J. Mellenbergh*
Affiliation:
University of Amsterdam

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Reviews
Copyright
Copyright © 1995 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, T. A. (1992). A didactic explanation of item bias, item impact, and item validity from a multidimensional perspective. Journal of Educational Measurement, 29, 6791.CrossRefGoogle Scholar
Kelderman, H. (1989). Item bias detection using loglinear IRT. Psychometrika, 54, 681697.CrossRefGoogle Scholar
Mellenbergh, G. J. (1982). Contingency table models for assessing item bias. Journal of Educational Statistics, 7, 105118.CrossRefGoogle Scholar
Mellenbergh, G. J. (1994). A unidimensional latent trait model for continuous item responses. Multivariate Behavioral Research, 29, 223236.CrossRefGoogle ScholarPubMed
Mellenbergh, G. J. (in press). Conceptual notes on models for discrete polytomous item responses. Applied Psychological Measurement.Google Scholar
Oort, F. J. (1992). Using restricted factor analysis to detect item bias. Methodika, 6, 150166.Google Scholar
Swaminathan, H., Rogers, H. J. (1990). Detecting differential item functioning using logistic regression procedures. Journal of Educational Measurement, 27, 361370.CrossRefGoogle Scholar