Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T04:36:31.923Z Has data issue: false hasContentIssue false

Fitting Nonlinear Ordinary Differential Equation Models with Random Effects and Unknown Initial Conditions Using the Stochastic Approximation Expectation–Maximization (SAEM) Algorithm

Published online by Cambridge University Press:  01 January 2025

Sy-Miin Chow*
Affiliation:
The Pennsylvania State University
Zhaohua Lu
Affiliation:
University of North Carolina at Chapel Hill
Hongtu Zhu
Affiliation:
University of North Carolina at Chapel Hill
Andrew Sherwood
Affiliation:
Duke University
*
Correspondence should be made to Sy-Miin Chow, The Pennsylvania State University, 413 Biobehavioral Health Building, University Park, PA 16802 USA. Email: symiin@psu.edu

Abstract

The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation–maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed.

Type
Original paper
Copyright
Copyright © 2014 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ait-Sahalia, Y. (2008). Closed-form likelihood expansions for multivariate diffusions. The Annals of Statistics, 36(2), 906937.CrossRefGoogle Scholar
Anderson, T.W. (2003). An introduction to multivariate statistical analysis. (3rd ed.). New York, NY: Wiley.Google Scholar
Arminger, G. (1986). Linear stochastic differential equation models for panel data with unobserved variables. In Tuma, N. (Eds.), Sociological methodology (pp. 187212). San Francisco: Jossey-Bass.Google Scholar
Bereiter, C. (1963). Some persisting dilemmas in the measurement of change. In Harris, C.W. (Eds.), Problems in measuring change (pp. 320). Madison, WI: University of Wisconsin Press.Google Scholar
Beskos, A., Papaspiliopoulos, O., & Roberts, G. (2009). Monte carlo maximum likelihood estimation for discretely observed diffusion processes. The Annals of Statistics, 37(1), 223245.CrossRefGoogle Scholar
Beskos, A., Papaspiliopoulos, O., Roberts, G., & Fearnhead, P. (2006). Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(3), 333382.CrossRefGoogle Scholar
Boker, S.M., & Graham, J. (1998). A dynamical systems analysis of adolescent substance abuse. Multivariate Behavioral Research, 33, 479507.CrossRefGoogle ScholarPubMed
Boker, S.M., & Nesselroade, J.R. (2002). A method for modeling the intrinsic dynamics of intraindividual variability: Recovering the parameters of simulated oscillators in multi- wave panel data. Multivariate Behavioral Research, 37, 127160.CrossRefGoogle ScholarPubMed
Bolger, N., Davis, A., & Rafaeli, E. (2003). Diary methods: Capturing life as it is lived. Annual Review of Psychology, 54, 579616.CrossRefGoogle ScholarPubMed
Brown, E.N., & Luithardt, H. (1999). Statistical model building and model criticism for human circadian data. Journal of Biological Rhythms, 14, 609616.CrossRefGoogle ScholarPubMed
Brown, E.N., Luithardt, H., & Czeisler, C.A. (2000). A statistical model of the human coretemperature circadian rhythm. American Journal of Physiology, Endocrinology and Metabolism, 279, 669683.CrossRefGoogle ScholarPubMed
Browne, M.W., & du Toit, H.C. (1991). Models for learning data. In Collins, L.M., & Horn, J.L. (Eds.), Best methods for the analysis of change: Recent advances, unanswered questions, future directions (pp. 4768). Washington, D.C.: American Psychological Association.CrossRefGoogle Scholar
Cao, J., Huang, J. Z., & Wu, H. (2012). Penalized nonlinear least squares estimation of time-varying parameters in ordinary differential equations. Journal of Computational and Graphical Statistics, 21(1), 42–56. doi:https://doi.org/10.1198/jcgs.2011.10021.CrossRefGoogle Scholar
Carels, R.A., Blumenthal, J.A., & Sherwood, A. (2000). Emotional responsivity during daily life: Relationship to psychosocial functioning and ambulatory blood pressure. International Journal of Psychophysiology, 36, 2533.CrossRefGoogle ScholarPubMed
Carlin, B.P., Gelfand, A., & Smith, A. (1992). Hierarchical bayesian analysis of changepoints problems. Applied Statistics, 41, 389405.CrossRefGoogle Scholar
Chow, S-M, Ferrer, E., & Nesselroade, J.R. (2007). An unscented kalman filter approach to the estimation of nonlinear dynamical systems models. Multivariate Behavioral Research, 42(2), 283321.CrossRefGoogle Scholar
Chow, S-M, Grimm, K.J., Guillaume, F., Dolan, C.V., & McArdle, J.J. (2013). Regime switching bivariate dual change score model. Multivariate Behavioral Research, 48(4), 463502.CrossRefGoogle ScholarPubMed
Chow, S.-M., Ho, M.-H. R., Hamaker, E. J., & Dolan, C. V. (2010). Equivalences and differences between structural equation and state-space modeling frameworks. Structural Equation Modeling, 17(303–332).CrossRefGoogle Scholar
Chow, S-M, & Nesselroade, J.R. (2004). General slowing or decreased inhibition? Mathematical models of age differences in cognitive functioning. Journals of Gerontology Series B—Psychological Sciences & Social Sciences, 59B(3), 101109.CrossRefGoogle Scholar
Chow, S-M, Tang, N., Yuan, Y., Song, X., & Zhu, H. (2011). Bayesian estimation of semiparametric dynamic latent variable models using the Dirichlet process prior. British Journal of Mathematical and Statistical Psychology, 64(1), 69106.CrossRefGoogle Scholar
Chow, S-M, & Zhang, G. (2013). Nonlinear regime-switching state-space (RSSS) models. Psychometrika: Application Reviews and Case Studies, 78(4), 740768.CrossRefGoogle ScholarPubMed
Cronbach, L.J., & Furby, L. (1970). How should we measure “change”—or should we?. Psychological Bulletin, 74(1), 6880.CrossRefGoogle Scholar
Cudeck, R., & Klebe, K.J. (2002). Multiphase mixed-effects models for repeated measures data. Psychological Methods, 7(1), 41–6.CrossRefGoogle ScholarPubMed
Dembo, A., & Zeitouni, O. (1986). Parameter estimation of partially observed continuous time stochastic processes via the EM algorithm. Stochastic Processes and Their Applications, 23, 91113.CrossRefGoogle Scholar
Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 138.CrossRefGoogle Scholar
Diebolt, J., & Celeux, G. (1993). Asymptotic properties of a stochastic EM algorithm for estimating mixing proportions. Communications in Statistics B—Stochastic Models, 9(4), 599613.CrossRefGoogle Scholar
Donnet, S., & Samson, A. (2007). Estimation of parameters in incomplete data models defined by dynamical systems. Journal of Statistical Planning and Inference, 137, 28152831.CrossRefGoogle Scholar
Du Toit, S. H. C., & Browne, M. W. (2001). The covariance structure of a vector ARMA time series. Structural equation modeling: Present and future (pp. 279–314). Chicago: Scientific Software International.Google Scholar
Duncan, T.E., Duncan, S.C., Strycker, L.A., Li, F., & Alpert, A. (1999). An introduction to latent variable growth curve modeling: Concepts, issues, and applications. Mahwah, NJ: Lawrence Erlbaum Associates, Publishers.Google Scholar
Durbin, J., & Koopman, S.J. (2001). Time series analysis by state space methods. New York, NY: Oxford University Press.Google Scholar
Gates, K.M., & Molenaar, P.C.M. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. Neuroimage, 63, 310319.CrossRefGoogle ScholarPubMed
Geweke, J., & Tanizaki, H. (2001). Bayesian estimation of state-space models using the Metropolis–Hastings algorithm within Gibbs sampling. Computational Statistics & Data Analysis, 37, 151170.CrossRefGoogle Scholar
Gordon, N.J., Salmond, D.J., & Smith, A.F.M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proceedings-F, Radar and Signal Processing, 140(2), 107113.CrossRefGoogle Scholar
Gu, M.G., & Zhu, H.T. (2001). Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation. Journal of the Royal Statistical Society, Series B, 63, 339355.CrossRefGoogle Scholar
Hairer, M., Stuart, A. M., Voss, J., & Wiberg, P. (2005). Analysis of spdes arising in path sampling. part i: The gaussian case. Communications in Mathematical Sciences, 3(4), 587–603.Google Scholar
Hale, J.K., & Koçak, H. (1991). Dynamics and bifurcation. New York, NY: Springer.CrossRefGoogle Scholar
Harris, C. W. (Ed.). (1963). Problems in measuring change. Madison, WI: University of Wisconsin Press.Google Scholar
Harvey, A.C., & Souza, R.C. (1987). Assessing and modelling the cyclical behaviour of rainfall in northeast Brazil. Journal of Climate and Applied Meteorology, 26, 13171322.2.0.CO;2>CrossRefGoogle Scholar
Hürzeler, M., & Künsch, H. (1998). Monte carlo approximations for general state-space models. Journal of Computational and Graphical Statistics, 7, 175193.CrossRefGoogle Scholar
Jones, R. H. (1984). Fitting multivariate models to unequally spaced data. In E. Parzen (Ed.), Time series analysis of irregularly observed data (Vol. 25, p. 158–188). New York, NY: Springer.Google Scholar
Jones, R.H. (1993). Longitudinal data with serial correlation: A state-space approach. Boca Raton, FL: Chapman & Hall/CRC.CrossRefGoogle Scholar
Kaplan, D., & Glass, L. (1995). Understanding nonlinear dynamics. New York, NY: Springer.CrossRefGoogle Scholar
Kenny, D.A., & Judd, C.M. (1984). Estimating the nonlinear and interactive effects of latent variables. Psychological Bulletin, 96, 201210.CrossRefGoogle Scholar
Kincanon, E., & Powel, W. (1995). Chaotic analysis in psychology and psychoanalysis. The Journal of Psychology, 129, 495505.CrossRefGoogle ScholarPubMed
Kitagawa, G. (1998). A self-organizing state-space model. Journal of the American Statistical Association, 93(443), 12031215.Google Scholar
Klein, A.G., & Muthén, B.O. (2007). Quasi maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects. Multivariate Behavioral Research, 42(4), 647673.CrossRefGoogle Scholar
Kuhn, E., & Lavielle, M. (2005). Maximum likelihood estimation in nonlinear mixed effects models. Computational Statistics & Data Analysis, 49, 10201038.CrossRefGoogle Scholar
Kulikov, G., & Kulikova, M. (2014). Accurate numerical implementation of the continuous-discrete extended Kalman filter. IEEE Transactions on Automatic Control, 59(1), 273279. doi:10.1109/TAC.2013.2272136.CrossRefGoogle Scholar
Lee, S., & Song, X. (2003). Maximum likelihood estimation and model comparison for mixtures of structural equation models with ignorable missing data. Journal of Classification, 20(2), 221255. doi:10.1007/s00357-003-0013-5.CrossRefGoogle Scholar
Li, F., Duncan, T.E., & Acock, A. (2000). Modeling interaction effects in latent growth curve models. Structural Equation Modeling, 7(4), 497533.CrossRefGoogle Scholar
Liang, H., Miao, H., & Wu, H. (2010). Estimation of constant and time-varying dynamic parameters of HIV infection in a nonlinear differential equation model. Annals of Applied Statistics, 4(1), 460483.CrossRefGoogle Scholar
Longstaff, M.G., & Heath, R.A. (1999). A nonlinear analysis of the temporal characteristics of handwriting. Human Movement Science, 18, 485524.CrossRefGoogle Scholar
Losardo, D. (2012). An examination of initial condition specification in the structural equation modeling framework. Unpublished doctoral dissertation, University of North Carolina, Chapel Hill, NC.Google Scholar
Louis, T.A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B, 44, 190200.CrossRefGoogle Scholar
Marsh, W.H., Wen, Z.L., & Hau, J-T. (2004). Structural equation models of latent interactions: Evaluation of alternative estimation strategies and indicator construction. Psychological Methods, 9, 275300.CrossRefGoogle ScholarPubMed
Mbalawata, I.S., Särkkä, S., & Haario, H. (2013). Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering. Computational Statistics, 28(3), 11951223.CrossRefGoogle Scholar
McArdle, J.J., & Hamagami, F. (2001). Latent difference score structural models for linear dynamic analysis with incomplete longitudinal data. In Collins, L., & Sayer, A. (Eds.), New methods for the analysis of change (pp. 139175). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Mcardle, J.J., & Hamagami, F. (2003). Structural equation models for evaluating dynamic concepts within longitudinal twin analyses. Behavior Genetics, 33(2), 137159. doi:10.1023/A:1022553901851.CrossRefGoogle ScholarPubMed
Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107122.CrossRefGoogle Scholar
Miao, H., Xin, X., Perelson, A.S., & Wu, H. (2011). On identifiability of nonlinear ODE models and applications in viral dynamics. SIAM Review, 53(1), 339.CrossRefGoogle Scholar
Molenaar, P.C.M. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific pyschology-this time forever. Measurement: Interdisciplinary Research and Perspectives, 2, 201218.Google Scholar
Molenaar, P.C.M., & Newell, K.M. (2003). Direct fit of a theoretical model of phase transition in oscillatory finger motions. British Journal of Mathematical and Statistical Psychology, 56, 199214. doi:10.1348/000711003770480002.CrossRefGoogle ScholarPubMed
Ortega, J. (1990). Numerical analysis: A second course. Philadelphia, PA: Society for Industrial and Academic Press.CrossRefGoogle Scholar
Oud, J.H.L. (2007). Comparison of four procedures to estimate the damped linear differential oscillator for panel data. In Oud, J., & Satorra, A. (Eds.), Longitudinal models in the behavioral and related sciences. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Oud, J.H.L., & Jansen, R.A.R.G.. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrika, 65(2), 199215.CrossRefGoogle Scholar
Oud, J. H. L., & Singer, H. (Eds.). (2010). Special issue: Continuous time modeling of panel data, 62 (1).Google Scholar
Pickering, T.G., Shimbo, D., & Haas, D. (2006). Ambulatory blood-pressure monitoring. The New England Journal of Medicine, 354, 23682374.CrossRefGoogle ScholarPubMed
Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P. (2002). Numerical recipes in C. Cambridge: Cambridge University Press.Google Scholar
R Development Core Team. (2009). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria: R Foundation for Statistical Computing. Retrieved April, 2014, from http://www.R-project.org (ISBN: 3-900051-07-0).Google Scholar
Ralston, A., & Rabinowitz, P. (2001). A first course in numerical analysis. (2nd ed.). Mineola, NY: Dover.Google Scholar
Ramsay, J.O., Hooker, G., Campbell, D., & Cao, J. (2007). Parameter estimation for differential equations: A generalized smoothing approach (with discussion). Journal of Royal Statistical Society: Series B, 69(5), 741796.CrossRefGoogle Scholar
Raudenbush, S.W., & Liu, X.-F.. (2001). Effects of study duration, frequency of observation, and sample size on power in studies of group differences in polynomial change. Psychological Methods, 6(4), 387401.CrossRefGoogle ScholarPubMed
Särkkä, S. (2013). Bayesian filtering and smoothing. Hillsdale, NJ: Cambridge University Press.CrossRefGoogle Scholar
SAS Institute Inc. (2008). SAS 9.2 Help and Documentation (Computer software manual). Cary, NC: SAS Institute Inc.Google Scholar
Sherwood, A., Steffen, P., Blumenthal, J., Kuhn, C., & Hinderliter, A.L. (2002). Nighttime blood pressure dipping: The role of the sympathetic nervous system. American Journal of Hypertension, 15, 111118.CrossRefGoogle ScholarPubMed
Sherwood, A., Thurston, R., Steffen, P., Blumenthal, J.A., Waugh, R.A., & Hinderliter, A.L. (2001). Blunted nighttime blood pressure dipping in postmenopausal women. American Journal of Hypertension, 14, 749754.CrossRefGoogle ScholarPubMed
Singer, H. (1992). The aliasing-phenomenon in visual terms. Journal of Mathematical Sociology, 14(1), 3949.CrossRefGoogle Scholar
Singer, H. (1995). Analytical score function for irregularly sampled continuous time stochastic processes with control variables and missing values. Econometric Theory, 11, 721735. doi:10.1017/S0266466600009701.CrossRefGoogle Scholar
Singer, H. (2002). Parameter estimation of nonlinear stochastic differential equations: Simulated maximum likelihood vs. extended Kaman filter and itô-Taylor expansion. Journal of Computational and Graphical Statistics, 11, 972995.CrossRefGoogle Scholar
Singer, H. (2007). Stochastic differential equation models with sampled data. In van Montfort, K., Oud, J.H.L., & Satorra, A. (Eds.), Longitudinal models in the behavioral and related sciences (pp. 73106). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Singer, H. (2010). Sem modeling with singular moment matrices. Part I: Ml-estimation of time series. The Journal of Mathematical Sociology, 34(4), 301320. doi:10.1080/0022250X.2010.532259.CrossRefGoogle Scholar
Singer, H. (2012). Sem modeling with singular moment matrices. Part II: Ml-estimation of sampled stochastic differential equations. The Journal of Mathematical Sociology, 36(1), 2243. doi:10.1080/0022250X.2010.532259.CrossRefGoogle Scholar
Stone, A.A., & Shiffman, S. (1994). Ecological momentary assessment (ema) in behavioral medicine. Annals of Behavioral Medicine, 16(3), 199202.CrossRefGoogle Scholar
Strogatz, S.H. (1994). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Cambridge, MA: Westview.Google Scholar
Stuart, A. M., Voss, J., & Wilberg, P. (2004). Conditional path sampling of sdes and the langevin mcmc method. Communications in Mathematical Sciences, 2(4), 685–697.CrossRefGoogle Scholar
Tanizaki, H. (1996). Nonlinear filters: Estimation and applications. (2nd ed.). Berlin: Springer.CrossRefGoogle Scholar
Thatcher, R.W. (1998). A predator–prey model of human cerebral development. In Newell, K.M., & Molenaar, P.C.M. (Eds.), Applications of nonlinear dynamics to developmental process modeling (pp. 87128). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Wen, Z., Marsh, H.W., & Hau, K-T. (2002). Interaction effects in growth modeling: A full model. Structural Equation Modeling, 9(1), 2039.CrossRefGoogle Scholar
Wu, H. (2005). Statistical methods for HIV dynamic studies in AIDS clinical trials. Statistical Methods in Medical Research, 14, 171192.CrossRefGoogle ScholarPubMed
Zhu, H., Gu, M., & Peterson, B. (2007). Maximum likelihood from spatial random effects models via the stochastic approximation expectation maximization algorithm. Statistics and Computing Archive, 17(2), 163177.CrossRefGoogle Scholar
Zhu, H.T., & Zhang, H.P. (2006). Generalized score test of homogeneity for mixed effects models. Annals of Statistics, 34, 15451569.CrossRefGoogle Scholar