Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T06:18:47.042Z Has data issue: false hasContentIssue false

Commentary: Matching IRT Models to PRO Constructs—Modeling Alternatives, and Some Thoughts on What Makes a Model Different

Published online by Cambridge University Press:  01 January 2025

Matthias von Davier*
Affiliation:
Boston College
*
Correspondence should be made to Matthias von Davier, Boston College, 194 Beacon Street, Chestnut Hill, MA02467, USA. Email: vondavim@bc.edu

Abstract

This commentary is an attempt to present some additional alternatives to the suggestions made by Reise et al. (2021). IRT models as they are used for patient-reported outcome (PRO) scales may not be fully satisfactory when used with commonly made assumptions. The suggested change to an alternative parameterization is critically reflected with the intent to initiate discussion around more comprehensive alternatives that allow for more complex latent structures having the potential to be more appropriate for PRO scales as they are applied to diverse populations.

Type
Application Reviews and Case Studies
Copyright
Copyright© 2021 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M., & Stegun, I. A. (Eds.) (1968). Chapter 25.4, Integration. In Handbook of mathematical functions with formulas, graphs, and mathematical tables. Applied mathematics series (Vol. 55). Dover Publications.Google Scholar
Bickel, P. J., & Doksum, K. A. (1977). Mathematical statistics: Basic ideas and selected topics. Holden-Day, Incorporated.Google Scholar
Bradley, R, Terry, M Rank analysis of incomplete block designs. I. The method of paired comparisons. Biometrika, (1952). 39, 324345Google Scholar
Breslau, N, Reboussin, BA, Anthony, JC, Storr, CL The structure of posttraumatic stress disorder: Latent class analysis in 2 community samples. Archives of General Psychiatry, (2005). 62 (12 13431351 16330722CrossRefGoogle ScholarPubMed
Carragher, N, McWilliams, LA A latent class analysis of DSM-IV criteria for pathological gambling: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Psychiatry Research, (2011). 187 (1–2 185192CrossRefGoogle ScholarPubMed
De Boeck, P, Wilson, M, Acton, GS A conceptual and psychometric framework for distinguishing categories and dimensions. Psychological Review, (2005). 112 (1 129158CrossRefGoogle ScholarPubMed
de la Torre, J The generalized DINA model framework. Psychometrika, (2011). 76 (2 179199CrossRefGoogle Scholar
de Leeuw, J, Verhelst, N Maximum-likelihood-estimation in generalized Rasch models. Journal of Educational Statistics, (1986). 11, 183196CrossRefGoogle Scholar
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological, [Royal Statistical Society, Wiley], 39, 1–38.CrossRefGoogle Scholar
Embretson, S. E. (Ed.). (2010). Measuring psychological constructs with model-based approaches: An introduction. In S. E. Embretson (Ed.), Measuring psychological constructs: Advances in model-based approaches (pp. 1–7). American Psychological Association.CrossRefGoogle Scholar
Elo, A. (1978). The rating of chessplayers, past and present. Arco Publishing.Google Scholar
Fischer, GH On the existence and uniqueness of maximum-likelihood estimates in the Rasch model. Psychometrika, (1981). 46, 5977CrossRefGoogle Scholar
Follmann, D Consistent estimation in the Rasch model based on nonparametric margins. Psychometrika, (1988). 53, 553562CrossRefGoogle Scholar
Formann, AK Linear logistic latent class analysis for polytomous data. Journal of the American Statistical Association, (1992). 87, 476486CrossRefGoogle Scholar
Gangestad, S, Snyder, M To carve nature at its joints: On the existence of discrete classes in personality. Psychological Review, (1985). 92 (3 317349CrossRefGoogle Scholar
Gitomer, D, Yamamoto, K Performance modeling that integrates latent trait and class theory. Journal of Educational Measurement, (1991). 28, 173189CrossRefGoogle Scholar
Green, Peter J, Richardson, Sylvia Hidden Markov models and disease mapping. Journal of the American Statistical Association, (2002). 97 (460 10551070CrossRefGoogle Scholar
Haberman, S Product models for frequency tables involving indirect observation. Annals of Statistics, (1977). 5, 11241147CrossRefGoogle Scholar
Haberman, SJ, von Davier, M, Lee, Y-H Comparison of multidimensional item response models: Multivariate normal ability distributions versus multivariate polytomous ability distributions. ETS Research Report Series, (2008). 2008, i25CrossRefGoogle Scholar
Haertel, EH Using restricted latent class models to map the skill structure of achievement items. Journal of Educational Measurement, Wiley Online Library, (1989). 26, 301321Google Scholar
Heinen, T. (1996). Latent class and discrete latent trait models: Similarities and differences. Sage Publications.Google Scholar
Lix, L. M., Wu, X., Hopman, W., Mayo, N., Sajobi, T. T., Liu, J., Prior, J. C., Papaioannoum, A., Josse, R. G., Towheed, T. E., Davison, K. S., Sawatzky, R. (2016). Differential item functioning in the SF-36 physical functioning and mental health sub-scales: A population-based investigation in the Canadian Multicentre Osteoporosis Study. PLoS One, 11 (3), e0151519. PMID: 26998611; PMCID: PMC4801323.CrossRefGoogle ScholarPubMed
Moustaki, I, Knott, M Generalized latent trait models. Psychometrika, (2000). 65, 391411CrossRefGoogle Scholar
Rasch, G. (1966). An individualistic approach to item analysis. In P. F. Lazarsfeld & N. W. Henry (Eds.), Readings in mathematical social science (pp. 89–107). M.I.T. Press.Google Scholar
Rinker, DV, Neighbors, C Latent class analysis of DSM-5 alcohol use disorder criteria among heavy-drinking college students. Journal of Substance Abuse Treatment, (2015). 57, 8188CrossRefGoogle ScholarPubMed
Rohde, LA, Barbosa, G, Polanczyk, G, Eizirik, M, Rasmussen, ER, Neuman, RJ, Todd, RD Factor and latent class analysis of DSM-IV ADHD symptoms in a school sample of Brazilian adolescents. Journal of the American Academy of Child & Adolescent Psychiatry, (2001). 40 (6 711718 PMID: 11392350 CrossRefGoogle Scholar
Schmidt, C. O., Raspe, H., & Kohlmann, T. (2010). Graded back pain revisited–Do latent variable models change our understanding of severe back pain in the general population? Pain, 149(1), 50–56.CrossRefGoogle Scholar
Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models (1st ed.). Chapman and Hall/CRC.CrossRefGoogle Scholar
Smits, N, Öğreden, O, Garnier-Villarreal, M, Terwee, CB, Chalmers, RP A study of alternative approaches to non-normal latent trait distributions in item response theory models used for health outcome measurement. Statistical Methods in Medical Research, (2020). 29 (4 10301048 32156195 7221458CrossRefGoogle ScholarPubMed
Tatsuoka, KK Rule space: An approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, (1983). 20, 345354CrossRefGoogle Scholar
Templin, JL, Henson, RA Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, (2006). 11 (3 287305 16953706CrossRefGoogle ScholarPubMed
Titterington, D. M. (2006). Some aspects of latent structure analysis. In C. Saunders, M. Grobelnik, S. Gunn, & J. Shawe-Taylor (Eds.), Subspace, latent structure and feature selection. SLSFS 2005. Lecture notes in computer science (Vol. 3940). Springer.Google Scholar
von Davier, M. (2005). A general diagnostic model applied to language testing data (ETS Research Report Series RR-05-16). Educational Testing Service.Google Scholar
von Davier, M A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, (2008). 61 (Pt 2 287307CrossRefGoogle ScholarPubMed
von Davier, M., & Lee, Y.-S. (2019). Handbook of diagnostic classification models: Models and model extensions, applications, software packages. Springer.CrossRefGoogle Scholar
von Davier, M., & Rost, J. (2016). Logistic mixture-distribution response models. In van der Linden (ed.) Handbook of item response theory (Vol. 23, pp. 393–406). CRC Press.Google Scholar
von Davier, M, Yamamoto, K Partially observed mixtures of IRT models: An extension of the generalized partial credit model. Applied Psychological Measurement, (2004). 28, 389406CrossRefGoogle Scholar
von Davier, M, Naemi, B, Roberts, RD Factorial versus typological models: A comparison of methods for personality data. Measurement: Interdisciplinary Research and Perspectives, (2012). 10 (4 185208Google Scholar
Woods, CM, Lin, N Item response theory with estimation of the latent density using Davidian curves. Applied Psychological Measurement, (2009). 33 (2 102117CrossRefGoogle Scholar
Wu, X, Sawatzky, R, Hopman, Wet al.. Latent variable mixture models to test for differential item functioning: A population-based analysis. Health and Quality of Life Outcomes, (2017). 15, 102CrossRefGoogle ScholarPubMed
Xu, X, Jia, Y The Sensitivity of Parameter Estimates to the Latent Trait Distribution. ETS Research Report Series, (2011). 2011, i17CrossRefGoogle Scholar
Xu, X., & von Davier, M. (2006). Cognitive Diagnosis for NAEP proficiency data. ETS Research Report Series, 2006, i–25.CrossRefGoogle Scholar
Zermelo, E. (1929). Die Berechnung der Turnier-Ergebnisse als ein Maximumproblem der Wahrscheinlichkeitsrechnung [The calculation of tournament results as a maximum problem of probability calculus]. Mathematische Zeitschrift, 29, 436–460.CrossRefGoogle Scholar
Zhu, H., Luo, S., & DeSantis, S. M. (2017). Zero-inflated count models for longitudinal measurements with heterogeneous random effects. Statistical Methods in Medical Research, 26 (4), 17741786.CrossRefGoogle ScholarPubMed