Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T02:04:16.146Z Has data issue: false hasContentIssue false

A Bayesian Vector Multidimensional Scaling Procedure Incorporating Dimension Reparameterization with Variable Selection

Published online by Cambridge University Press:  01 January 2025

Duncan K. H. Fong*
Affiliation:
Pennsylvania State University
Wayne S. DeSarbo
Affiliation:
Pennsylvania State University
Zhe Chen
Affiliation:
Pennsylvania State University
Zhuying Xu
Affiliation:
Pennsylvania State University
*
Correspondence should be made to Duncan K. H. Fong, Department of Marketing, Pennsylvania State University, University Park, PA16802, USA. Email: i2v@psu.edu

Abstract

We propose a two-way Bayesian vector spatial procedure incorporating dimension reparameterization with a variable selection option to determine the dimensionality and simultaneously identify the significant covariates that help interpret the derived dimensions in the joint space map. We discuss how we solve identifiability problems in a Bayesian context that are associated with the two-way vector spatial model, and demonstrate through a simulation study how our proposed model outperforms a popular benchmark model. In addition, an empirical application dealing with consumers’ ratings of large sport utility vehicles is presented to illustrate the proposed methodology. We are able to obtain interpretable and managerially insightful results from our proposed model with variable selection in comparison with the benchmark model.

Type
Original Paper
Copyright
Copyright © 2015 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Zhe Chen is currently working at Google Inc.

References

Addelman, S. Irregular fractions of the 2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{{\rm n}}$$\end{document} factorial experiments (1961). Technometrics. 3, 479496.Google Scholar
Barbieri, M.M., & Berger, J. (2004). Optimal predictive model selection. Annals of Statistics, 32, 870897.CrossRefGoogle Scholar
Benzecri, J.P. (1992). Correspondence analysis handbook. New York: Marcel Dekker.CrossRefGoogle Scholar
Bolton, G.E., Fong, D.K.H., & Mosquin, P. (2003). Bayes factors with an application to experimental economics. Experimental Economics, 6, 311325.CrossRefGoogle Scholar
Borg, I., & Groenen, P.J.F. (2005). Modern multidimensional scaling: Theory and applications (2nd ed.). New York: Springer.Google Scholar
Brown, P.J., Vannucci, M., & Fearn, T. (1998). Multivariate Bayesian variable selection and prediction. Journal of the Royal Statistical Society Series B, 60, 627641.CrossRefGoogle Scholar
Buja, N., & Eyuboglu, N. (1992). Remarks on parallel analysis. Multivariate Behavioral Research, 27(4), 509540.CrossRefGoogle ScholarPubMed
Carroll, J.D. (1980). Models and methods for multidimensional analysis of preferential choice (or other dominance) data. In Lantermann, E.D., & Feger, H. (Eds.), Similarity and choice (pp. 234289). Vienna: Hans Huber Publishers.Google Scholar
Carroll, J.D., & Arabie, P. (1980). Multidimensional scaling. Annual Review of Psychology, 31, 607649.CrossRefGoogle ScholarPubMed
Carroll, J.D., Pruzanksy, S., & Kruskal, J.B. (1980). CANDELINC: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters. Psychometrika, 45(1), 324.CrossRefGoogle Scholar
Cox, T.F., & Cox, M.A.A. (2001). Multidimensional scaling (2nd ed.). Boca Raton, FL: Chapman and Hall/CRC.Google Scholar
Dawid, A. (1981). Some matrix-variate distribution theory: Notational considerations and a Bayesian application. Biometrika, 68(1), 265274.CrossRefGoogle Scholar
DeSarbo, W.S. (1982). GENNCLUS: New models for general nonhierarchical clustering analysis. Psychometrika, 47(4), 449475.CrossRefGoogle Scholar
DeSarbo, W.S., & Carroll, J.D. (1985). Three-way metric unfolding via alternating weighted least squares. Psychometrika, 50(3), 275300.CrossRefGoogle Scholar
DeSarbo, W.S., & Cho, J. (1989). A stochastic multidimensional scaling vector threshold model for the spatial representation of pick any/N data. Psychometrika, 54(1), 105121.CrossRefGoogle Scholar
DeSarbo, W.S., Fong, D.K.H., Liechty, J., & Saxton, K. (2004). A hierarchical Bayesian procedure for two-mode cluster analysis. Psychometrika, 69, 547572.CrossRefGoogle Scholar
DeSarbo, W.S., Grewal, R., & Scott, C.J. (2008). A clusterwise bilinear multidimensional scaling methodology for simultaneous segmentation and positioning analysis. Journal of Marketing Research, 45(2), 280292.CrossRefGoogle Scholar
DeSarbo, W.S., Howard, D.J., & Jedidi, K. (1991). MULTICLUS: A new method for simultaneously performing multidimensional scaling and cluster analysis. Psychometrika, 56(1), 121136.CrossRefGoogle Scholar
DeSarbo, W.S., & Jedidi, K. (1995). The spatial representation of heterogeneous consideration sets. Marketing Science, 14(3), 326342.CrossRefGoogle Scholar
DeSarbo, W.S., & Kim, S. (2013). A review of the major multidimensional scaling models for the analysis of preference/dominance data in marketing. In Moutinho, L., & Huarng, K.-H. (Eds.), Quantitative Modeling in Marketing and Management (pp. 327). London: World Scientific Press.Google Scholar
DeSarbo, W.S., Kim, Y., & Fong, D.K.H. (1999). A Bayesian multidimensional scaling procedure for the spatial analysis of revealed choice data. Journal of Econometrics, 89, 79108.CrossRefGoogle Scholar
DeSarbo, W.S., Oliver, R.L., & DeSoete, G. (1986). A probabilistic multidimensional scaling vector model. Applied Psychological Measurement, 10(1), 7998.CrossRefGoogle Scholar
DeSarbo, W.S., Park, J., & Rao, V. (2011). Deriving joint space positioning maps from consumer preference ratings. Marketing Letters, 22(1), 114.CrossRefGoogle Scholar
DeSarbo, W.S., & Rao, V.R. (1986). A constrained unfolding methodology for product positioning. Marketing Science, 5, 119.CrossRefGoogle Scholar
Fong, D.K.H. (2010). Bayesian multidimensional scaling and its applications in marketing research. In Chen, Ming-Hui, Dey, Dipak K, Mueller, Peter, Sun, Dongchu, & Ye, Keying (Eds.), Frontier of Statistical Decision Making and Bayesian Analysis (pp. 410417). Berlin: Springer.Google Scholar
Fong, D.K.H., DeSarbo, W.S., Park, J., & Scott, C.J. (2010). A Bayesian vector multidimensional scaling procedure for the analysis of ordered preference data. Journal of the American Statistical Association, 105(490), 482492.CrossRefGoogle Scholar
Fong, D.K.H., Ebbes, P., & DeSarbo, W.S. (2012). A heterogeneous Bayesian regression model for cross sectional data involving a single observation per response unit. Psychometrika, 77(2), 293314.CrossRefGoogle Scholar
George, E.I., & McCulloch, R.E. (1993). Variable selection via gibbs sampling. Journal of American Statistical Association, 88, 881889.CrossRefGoogle Scholar
George, E.I., & McCulloch, R.E. (1997). Approaches for Bayesian variable selection. Statistica Sinica, 7, 339373.Google Scholar
Gifi, A. (1990). Nonlinear multivariate analysis. Chichester, England: Wiley.Google Scholar
Golub, G.H., & Van Loan, C.F. (1996). Matrix computations (3rd ed.). Baltimore, MD: Johns Hopkins University Press.Google Scholar
Gormley, I. C., & Murphy, T. B. (2006). A latent space model for rank data. In Statistical network analysis: Models, issues and new directions. Lecture notes in computer science. New York: Springer. Available as technical report at http://www.tcd.ie/Statistics/postgraduate/0602.pdf.Google Scholar
Gupta, A.K., & Nagar, D.K. (2000). Matrix variate distributions. Monographs and surveys in pure and applied mathematics. London: Chapman & Hall/CRC.Google Scholar
Gustafson, P. (2005). On model expansion, model contraction, identifiability and prior information: Two illustrative scenarios involving mismeasured variables. Statistical Science, 20, 111140.CrossRefGoogle Scholar
Harshman, R.A., & Lundy, M.E. (1984). Data preprocessing and the extended PARAFAC model. In Law, H.G., Snyder, CW Jr, Hattie, J., & McDonald, R.P. (Eds.), Research methods for multimode data analysis (pp. 216284). New York: Praeger.Google Scholar
Jedidi, K., & DeSarbo, W.S. (1991). A stochastic multidimensional scaling procedure for the spatial representation of three-mode, three-way pick any/J data. Psychometrika, 56(3), 471494.CrossRefGoogle Scholar
Jolliffe, I.T., Trendafilov, N.T., & Uddin, M. (2003). A modified principal component technique based on the LASSO. Journal of Computational and Graphical Statistics, 12(3), 531547.CrossRefGoogle Scholar
Kass, R.E., & Raftery, A.E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773795.CrossRefGoogle Scholar
Kruskal, J.B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 127.CrossRefGoogle Scholar
Lee, M.D. (2008). Three case studies in the Bayesian analysis of cognitive models. Psychonomic Bulletin & Review, 15, 115.CrossRefGoogle ScholarPubMed
Oh, M-S, & Raftery, A.E. (2001). Bayesian multidimensional scaling and choice of dimension. Journal of the American Statistical Association, 96, 10311044.CrossRefGoogle Scholar
O’Hara, R.B.O., & Sillanpaa, M.J. (2009). A review of Bayesian variable selection methods: What, how and which. Bayesian Analysis, 4(1), 85118.Google Scholar
Park, J., DeSarbo, W.S., & Liechty, J. (2008). A hierarchical Bayesian multidimensional scaling methodology for accommodating both structural and preference heterogeneity. Psychometrika, 73(3), 451472.CrossRefGoogle Scholar
Raftery, A.E., Newton, M.A., Satagopan, J.M., & Krivitsky, P.N. (2007). Estimating the integrated likelihood via posterior simulation using the harmonic mean identity. In Bernardo, J.M., Bayarri, M.J., Berger, J.O., Dawid, A.P., Heckerman, D., Smith, A.F.M., & West, M. (Eds.), Bayesian statistics 8 (pp. 145). Oxford: Oxford University Press.Google Scholar
Rossi, P.E., McCulloch, R.E., & Allenby, G.M. (1996). The value of purchase history data in target marketing. Marketing Science, 15(4), 321340.CrossRefGoogle Scholar
Schonemann, P.H. (1970). On metric multidimensional unfolding. Psychometrika, 35(3), 349366.CrossRefGoogle Scholar
Scott, C.J., & DeSarbo, W.S. (2011). A new constrained stochastic multidimensional scaling vector model: An application to the perceived importance of leadership attributes. Journal of Modeling in Management, 6(1), 732.CrossRefGoogle Scholar
Shepard, R.N. (1962). The analysis of proximities: Multidimensional scaling with an unknown distance function. Psychometrika, 27 125–140219246.CrossRefGoogle Scholar
Shepard, R.N. (1980). Multidimensional scaling, tree-fitting, and clustering. Science, 210, 390398.CrossRefGoogle ScholarPubMed
Shin, J.S., Fong, D.K.H., & Kim, K.J. (1998). Complexity reduction of a house of quality chart using correspondence analysis. Quality Management Journal, 5, 4658.CrossRefGoogle Scholar
Slater, P. (1960). The analysis of personal preferences. The British Journal of Statistical Psychology, 13, 119135.CrossRefGoogle Scholar
Spiegelhalter, D.J., Best, N.G., Carlin, B.P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B, 64, 583639.CrossRefGoogle Scholar
Takane, Y. (2013). Constrained principal component analysis. New York, NY: Chapman & Hall Inc.Google Scholar
Takane, Y., Young, F., & Leeuw, J. (1977). Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features. Psychometrika, 42(1), 767.CrossRefGoogle Scholar
Ter Braak, C.J.F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 67(5), 11671179.CrossRefGoogle Scholar
Tucker, L.R. (1960). Intra-individual and inter-individual multidimensionality. In Gullikson, H., & Messick, S. (Eds.), Psychological Scaling: Theory and Applications. New York, NY: Holt, Rinehart, & Winston.Google Scholar