Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T17:58:08.213Z Has data issue: false hasContentIssue false

Impaired executive function exacerbates neural markers of posttraumatic stress disorder

Published online by Cambridge University Press:  21 April 2021

Audreyana Jagger-Rickels*
Affiliation:
National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
Anna Stumps
Affiliation:
Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
David Rothlein
Affiliation:
National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA
Hannah Park
Affiliation:
Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA
Francesca Fortenbaugh
Affiliation:
Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA Department of Psychiatry, Harvard Medical School, Boston, MA, USA
Agnieszka Zuberer
Affiliation:
Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
Jennifer R. Fonda
Affiliation:
Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA Department of Psychiatry, Harvard Medical School, Boston, MA, USA Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
Catherine B. Fortier
Affiliation:
Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA Department of Psychiatry, Harvard Medical School, Boston, MA, USA Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, USA
Joseph DeGutis
Affiliation:
Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA Department of Psychiatry, Harvard Medical School, Boston, MA, USA
William Milberg
Affiliation:
Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA Department of Psychiatry, Harvard Medical School, Boston, MA, USA Geriatric Research, Education and Clinical Center (GRECC), VABoston Healthcare System, Boston, Massachusetts, USA
Regina McGlinchey
Affiliation:
Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA Department of Psychiatry, Harvard Medical School, Boston, MA, USA Geriatric Research, Education and Clinical Center (GRECC), VABoston Healthcare System, Boston, Massachusetts, USA
Michael Esterman
Affiliation:
National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, USA
*
Author for correspondence: Audreyana Jagger-Rickels, E-mail: acrickel@bu.edu

Abstract

Background

A major obstacle in understanding and treating posttraumatic stress disorder (PTSD) is its clinical and neurobiological heterogeneity. To address this barrier, the field has become increasingly interested in identifying subtypes of PTSD based on dysfunction in neural networks alongside cognitive impairments that may underlie the development and maintenance of symptoms. The current study aimed to determine if subtypes of PTSD, based on normative-based cognitive dysfunction across multiple domains, have unique neural network signatures.

Methods

In a sample of 271 veterans (90% male) that completed both neuropsychological testing and resting-state fMRI, two complementary, whole-brain functional connectivity analyses explored the link between brain functioning, PTSD symptoms, and cognition.

Results

At the network level, PTSD symptom severity was associated with reduced negative coupling between the limbic network (LN) and frontal-parietal control network (FPCN), driven specifically by the dorsolateral prefrontal cortex and amygdala Hubs of Dysfunction. Further, this relationship was uniquely moderated by executive function (EF). Specifically, those with PTSD and impaired EF had the strongest marker of LN-FPCN dysregulation, while those with above-average EF did not exhibit PTSD-related dysregulation of these networks.

Conclusion

These results suggest that poor executive functioning, alongside LN-FPCN dysregulation, may represent a neurocognitive subtype of PTSD.

Type
Original Article
Creative Commons
This is a work of the US Government and is not subject to copyright protection within the United States. Published by Cambridge University Press.
Copyright
Copyright © US Department of Veterans Affairs, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Admon, R., Milad, M. R., & Hendler, T. (2013). A causal model of post-traumatic stress disorder: Disentangling predisposed from acquired neural abnormalities. Trends in Cognitive Sciences, 17(7), 337347. https://doi.org/10.1016/j.tics.2013.05.005.CrossRefGoogle ScholarPubMed
Akiki, T. J., Averill, C. L., & Abdallah, C. G. (2017). A network-based neurobiological model of PTSD: Evidence from structural and functional neuroimaging studies. Current Psychiatry Reports, 19(11), 337347. https://doi.org/10.1007/s11920-017-0840-4.CrossRefGoogle ScholarPubMed
Akiki, T. J., Averill, C. L., Wrocklage, K. M., Scott, J. C., Averill, L. A., Schweinsburg, B., … Abdallah, C. G. (2018). Default mode network abnormalities in posttraumatic stress disorder: A novel network-restricted topology approach. Neuroimage, 176, 489498. https://doi.org/10.1016/j.physbeh.2017.03.040.CrossRefGoogle ScholarPubMed
Aupperle, R. L., Allard, C. B., Grimes, E. M., Simmons, A. N., Flagan, T., Behrooznia, M., … Stein, M. B. (2012a). Dorsolateral prefrontal cortex activation during emotional anticipation and neuropsychological performance in posttraumatic stress disorder. Archives of General Psychiatry, 69(4), 360371. https://doi.org/10.1001/archgenpsychiatry.2011.1539.Google ScholarPubMed
Aupperle, R. L., Melrose, A. J., Stein, M. B., & Paulus, M. P. (2012b). Executive function and PTSD: Disengaging from trauma. Neuropharmacology, 62(2), 686694. https://doi.org/10.1016/j.neuropharm.2011.02.008.CrossRefGoogle ScholarPubMed
Bartova, L., Meyer, B. M., Diers, K., Rabl, U., Scharinger, C., Popovic, A., … Pezawas, L. (2015). Reduced default mode network suppression during a working memory task in remitted major depression. Journal of Psychiatric Research, 64, 918. https://doi.org/10.1016/j.jpsychires.2015.02.025.CrossRefGoogle ScholarPubMed
Blake, D. D., Kaloupek, D. G., Weathers, F. W., Gusman, F. D., Nagy, L. M., Charney, D. S., … Keane, T. M. (1995). The development of a clinician-administered PTSD scale. Journal of Trauma Stress, 8(1), 7590.CrossRefGoogle ScholarPubMed
Boccia, M., D'Amico, S., Bianchini, F., Marano, A., Giannini, A. M., & Piccardi, L. (2016). Different neural modifications underpin PTSD after different traumatic events: An fMRI meta-analytic study. Brain Imaging and Behavior, 10(1), 226237. https://doi.org/10.1007/s11682-015-9387-3.CrossRefGoogle ScholarPubMed
Brewin, C. R., Kleiner, J. S., Vasterling, J. J., & Field, A. P. (2007). Memory for emotionally neutral information in posttraumatic stress disorder: A meta-analytic investigation. Journal of Abnormal Psychology, 116(3), 448463. American Psychological Association. https://doi.org/10.1037/0021-843X.116.3.448.CrossRefGoogle ScholarPubMed
Bryant, R. A., Kemp, A. H., Felmingham, K. L., Liddell, B., Olivieri, G., Peduto, A., … Williams, L. M. (2008). Enhanced amygdala and medial prefrontal activation during nonconscious processing of fear in posttraumatic stress disorder: An fMRI study. Human Brain Mapping, 29(5), 517523. https://doi.org/10.1002/hbm.20415.CrossRefGoogle ScholarPubMed
Buhle, J. T., Silvers, J. A., Wage, T. D., Lopez, R., Onyemekwu, C., Kober, H., … Ochsner, K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24(11), 29812990. https://doi.org/10.1093/cercor/bht154.CrossRefGoogle ScholarPubMed
Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193213.CrossRefGoogle ScholarPubMed
Chand, G. B., & Dhamala, M. (2016). Interactions among the brain default-mode, salience, and central-executive networks during perceptual decision-making of moving dots. Brain Connectivity, 6(3), 249254. https://doi.org/10.1089/brain.2015.0379.CrossRefGoogle ScholarPubMed
Chen, A. C., Oathes, D. J., Chang, C., Bradley, T., Zhou, Z. W., Williamsa, L. M., … Etkin, A. (2013). Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proceedings of the National Academy of Sciences of the USA, 110(49), 1994419949. https://doi.org/10.1073/pnas.1311772110.CrossRefGoogle ScholarPubMed
Christova, P., James, L. M., Engdahl, B. E., Lewis, S. M., & Georgopoulos, A. P. (2015). Diagnosis of posttraumatic stress disorder (PTSD) based on correlations of prewhitened fMRI data: Outcomes and areas involved. Experimental Brain Research, 233(9), 26952705. https://doi.org/10.1007/s00221-015-4339-0.CrossRefGoogle ScholarPubMed
Crocker, L. D., Jurick, S. M., Thomas, K. R., Keller, A. V., Sanderson-Cimino, M., Boyd, B., … Jak, A. J. (2018). Worse baseline executive functioning is associated with dropout and poorer response to trauma-focused treatment for veterans with PTSD and comorbid traumatic brain injury. Behaviour Research and Therapy, 108, 6877. https://doi.org/10.1016/j.brat.2018.07.004.CrossRefGoogle ScholarPubMed
Cusack, K., Jonas, D. E., Forneris, C. A., Wines, C., Sonis, J., Middleton, J. C., … Gaynes, B. N. (2016). Psychological treatments for adults with posttraumatic stress disorder: A systematic review and meta-analysis. Clinical Psychology Review, 43, 128141. https://doi.org/10.1016/j.cpr.2015.10.003.CrossRefGoogle ScholarPubMed
DeGutis, J., Esterman, M., McCulloch, B., Rosenblatt, A., Milberg, W., & McGlinchey, R. (2015). Posttraumatic psychological symptoms are associated with reduced inhibitory control, not general executive dysfunction. Journal of the International Neuropsychological Society, 21(5), 342352. https://doi.org/10.1017/S1355617715000235.CrossRefGoogle Scholar
Dunsmoor, J. E., Prince, S. E., Murty, V. P., Kragel, P. A., & LaBar, K. S. (2011). Neurobehavioral mechanisms of human fear generalization. NeuroImage, 55(4), 18781888. https://doi.org/10.1016/j.neuroimage.2011.01.041.CrossRefGoogle ScholarPubMed
Dutra, S. J., Marx, B. P., McGlinchey, R., DeGutis, J., & Esterman, M. (2018). Reward ameliorates posttraumatic stress disorder-related impairment in sustained attention. Chronic Stress, 2, 247054701881240, 1−9. https://doi.org/10.1177/2470547018812400.CrossRefGoogle ScholarPubMed
Esterman, M., Degutis, J., Mercado, R., Rosenblatt, A., Vasterling, J. J., Milberg, W., & Mcglinchey, R. (2013). Stress-related psychological symptoms are associated with increased attentional capture by visually salient distractors. Journal of the International Neuropsychological Society, 19(7), 835840. https://doi.org/10.1017/S135561771300057X.CrossRefGoogle ScholarPubMed
Esterman, M., Fortenbaugh, F. C., Pierce, M. E., Fonda, J. R., DeGutis, J., Milberg, W., & McGlinchey, R. (2019). Trauma-related psychiatric and behavioral conditions are uniquely associated with sustained attention dysfunction. Neuropsychology, 33(5), 711724. https://doi.org/10.1037/neu0000525.CrossRefGoogle ScholarPubMed
Esterman, M., Stumps, A., Jagger-Rickels, A., Rothlein, D., DeGutis, J., Fortenbaugh, F., … McGlinchey, R. (2020). Evaluating the evidence for a neuroimaging subtype of posttraumatic stress disorder. Science Translational Medicine, 12(568), eaaz9343. https://stm.sciencemag.org/lookup/doi/10.1126/scitranslmed.aaz9343.CrossRefGoogle ScholarPubMed
Etkin, A., Maron-Katz, A., Wu, W., Fonzo, G. A., Huemer, J., Vértes, P. E., … O'Hara, R. (2019). Using fMRI connectivity to define a treatment-resistant form of post-traumatic stress disorder. Science Translational Medicine, 11(486), 1−12. https://doi.org/10.1126/scitranslmed.aal3236.CrossRefGoogle ScholarPubMed
Etkin, A., & Wager, T. D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164(10), 14761488. https://doi.org/10.1176/appi.ajp.2007.07030504.CrossRefGoogle ScholarPubMed
Forbes, D., Haslam, N., Williams, B. J., & Creamer, M. (2005). Testing the latent structure of posttraumatic stress disorder: A taxometric study of combat veterans. Journal of Traumatic Stress, 18(6), 647656. https://doi.org/10.1002/jts.20073.CrossRefGoogle ScholarPubMed
Fortenbaugh, F. C., Corbo, V., Poole, V., McGlinchey, R., Milberg, W., Salat, D., … Esterman, M. (2017a). Interpersonal early-life trauma alters amygdala connectivity and sustained attention performance. Brain and Behavior, 7(5), 116. https://doi.org/10.1002/brb3.684.CrossRefGoogle ScholarPubMed
Fortenbaugh, F. C., DeGutis, J., & Esterman, M. (2017b). Recent theoretical, neural, and clinical advances in sustained attention research. Annals of the New York Academy of Sciences, 1396(1), 7091. https://doi.org/10.1111/nyas.13318.CrossRefGoogle ScholarPubMed
Fortenbaugh, F. C., Rothlein, D., McGlinchey, R., DeGutis, J., & Esterman, M. (2018). Tracking behavioral and neural fluctuations during sustained attention: A robust replication and extension. NeuroImage, 171(July 2017), 148164. https://doi.org/10.1016/j.neuroimage.2018.01.002.CrossRefGoogle ScholarPubMed
Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: Bridging selective attention and working memory. Trends in Cognitive Sciences., 16(2), 129135. https://doi.org/10.1016/j.tics.2011.11.014.CrossRefGoogle ScholarPubMed
Green, P. (2004). Medical Symptom Validity Test (MSVT) for Microsoft Windows: User's manual.Google Scholar
Haaland, K. Y., Sadek, J. R., Keller, J. E., & Castillo, D. T. (2016). Neurocognitive correlates of successful treatment of PTSD in female veterans. Journal of the International Neuropsychological Society, 22(6), 643651. Cambridge University Press. https://doi.org/10.1017/S1355617716000424.CrossRefGoogle ScholarPubMed
Hayes, J. P., Morey, R. A., Petty, C. M., Seth, S., Smoski, M. J., McCarthy, G., … LaBar, K. S. (2010). Staying cool when things get hot: Emotion regulation modulates neural mechanisms of memory encoding. Frontiers in Human Neuroscience, 4, 110. https://doi.org/10.3389/fnhum.2010.00230.CrossRefGoogle ScholarPubMed
Hayes, J. P., VanElzakker, M. B., & Shin, L. M. (2012). Emotion and cognition interactions in PTSD: A review of neurocognitive and neuroimaging studies. Frontiers in Integrative Neuroscience, 6, 114. https://doi.org/10.3389/fnint.2012.00089.CrossRefGoogle ScholarPubMed
Heilbronner, R. L., Sweet, J. J., Morgan, J. E., Larrabee, G. J., & Millis, S. R. (2009). American Academy of clinical neuropsychology consensus conference statement on the neuropsychological assessment of effort, response bias, and malingering. Clinical Neuropsychologist, 23(7), 10931129. https://doi.org/10.1080/13854040903155063.CrossRefGoogle ScholarPubMed
Hoskins, M., Pearce, J., Bethell, A., Dankova, L., Barbui, C., Tol, W. A., … Bisson, J. I. (2015). Pharmacotherapy for post-traumatic stress disorder: Systematic review and meta-analysis. British Journal of Psychiatry, 206(2), 93100. https://doi.org/10.1192/bjp.bp.114.148551.CrossRefGoogle ScholarPubMed
Iverson, G. L. (2005). Outcome from mild traumatic brain injury. Current Opinion in Psychiatry, 18(3), 301317. https://doi.org/10.1097/01.yco.0000165601.29047.ae.CrossRefGoogle ScholarPubMed
Jak, A. J., Bondi, M. W., Delano-Wood, L., Wierenga, C., Corey-Bloom, J., Salmon, D. P., & Delis, D. C. (2009). Quantification of five neuropsychological approaches to defining mild cognitive impairment. American Journal of Geriatric Psychiatry, 17(5), 368375. https://doi.org/10.1097/JGP.0b013e31819431d5.CrossRefGoogle ScholarPubMed
Jak, A. J., Jurick, S., Crocker, L. D., Sanderson-Cimino, M., Aupperle, R., Rodgers, C. S., … Twamley, E. W. (2019). SMART-CPT for veterans with comorbid posttraumatic stress disorder and history of traumatic brain injury: A randomised controlled trial. Journal of Neurology, Neurosurgery & Psychiatry, 90(3), 333341. BMJ Publishing Group. https://doi.org/10.1136/jnnp-2018-319315.CrossRefGoogle ScholarPubMed
Keller, A. S., Ball, T. M., & Williams, L. M. (2019). Deep phenotyping of attention impairments and the ‘inattention biotype’ in major depressive disorder. Psychological Medicine, 50(13), 22032212.CrossRefGoogle ScholarPubMed
Kelly, A. M. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. NeuroImage, 39(1), 527537. https://doi.org/10.1016/j.neuroimage.2007.08.008.CrossRefGoogle ScholarPubMed
Koch, S. B. J., van Zuiden, M., Nawijn, L., Frijling, J. L., Veltman, D. J., & Olff, M. (2016a). Aberrant resting-state brain activity in posttraumatic stress disorder: A meta-analysis and systematic review. Depression and Anxiety, 33(7), 592605. https://doi.org/10.1002/da.22478.CrossRefGoogle ScholarPubMed
Koch, S. B. J., Van Zuiden, M., Nawijn, L., Frijling, J. L., Veltman, D. J., & Olff, M. (2016b). Intranasal oxytocin normalizes amygdala functional connectivity in posttraumatic stress disorder. Neuropsychopharmacology, 41(8), 20412051. https://doi.org/10.1038/npp.2016.1.CrossRefGoogle ScholarPubMed
Kucyi, A., Esterman, M., Riley, C. S., & Valera, E. M. (2016). Spontaneous default network activity reflects behavioral variability independent of mind-wandering. Proceedings of the National Academy of Sciences of the USA, 113(48), 1389913904. https://doi.org/10.1073/pnas.1611743113.CrossRefGoogle ScholarPubMed
Kucyi, A., Hove, M. J., Esterman, M., Hutchison, R. M., & Valera, E. M. (2017). Dynamic brain network correlates of spontaneous fluctuations in attention. Cerebral Cortex (New York, N.Y. : 1991), 27(3), 18311840. https://doi.org/10.1093/cercor/bhw029.Google ScholarPubMed
Lanius, R. A., Brand, B., Vermetten, E., Frewen, P. A., & Spiegel, D. (2012). The dissociative subtype of posttraumatic stress disorder: Rationale, clinical and neurobiological evidence, and implications. Depression and Anxiety, 29(8), 701708. https://doi.org/10.1002/da.21889.CrossRefGoogle ScholarPubMed
Lanius, R. A., Vermetten, E., Loewenstein, R. J., Brand, B., Christian, S., Bremner, J. D., & Spiegel, D. (2010). Emotion modulation in PTSD: Clinical and neurobiological evidence for a dissociative subtype. American Journal of Psychiatry, 167(6), 640647. https://doi.org/10.1176/appi.ajp.2009.09081168.CrossRefGoogle ScholarPubMed
Lei, D., Li, K., Li, L., Chen, F., Huang, X., & Lui, S.. (2015). Disrupted functional brain connectome in patients with posttraumatic stress disorder. Radiology, 276(3), 818827. https://doi.org/10.1148/radiol.15141700.CrossRefGoogle ScholarPubMed
Liberzon, I., & Abelson, J. L. (2016). Context processing and the neurobiology of post-traumatic stress disorder. Neuron, 92(1), 1430. https://doi.org/10.1016/j.neuron.2016.09.039.CrossRefGoogle ScholarPubMed
Liégeois, R., Li, J., Kong, R., Orban, C., Van De Ville, D., Ge, T., … Yeo, B. T. T. (2019). Resting brain dynamics at different timescales capture distinct aspects of human behavior. Nature Communications, 10(1), 1−9. https://doi.org/10.1038/s41467-019-10317-7.CrossRefGoogle ScholarPubMed
Lissek, S., Bradford, D. E., Alvarez, R. P., Burton, P., Espensen-Sturges, T., Reynolds, R. C., & Grillon, C. (2014). Neural substrates of classically conditioned fear-generalization in humans: A parametric fMRI study. Social Cognitive and Affective Neuroscience, 9(8), 11341142. https://doi.org/10.1093/scan/nst096.CrossRefGoogle ScholarPubMed
Liu, F., Xie, B., Wang, Y., Guo, W., Fouche, J. P., Long, Z., … Chen, H. (2014). Characterization of post-traumatic stress disorder using resting-state fMRI with a multi-level parametric classification approach. Brain Topography, 28(2), 221−227. https://doi.org/10.1007/s10548-014-0386-2.Google ScholarPubMed
Lovibond, P. F., & Lovibond, S. H. (1995). The structure of negative emotional states: Comparison of the depression anxiety stress scales (DASS) with the Beck depression and anxiety inventories. Behaviour Research and Therapy, 33, 225342.CrossRefGoogle ScholarPubMed
Maron-Katz, A., Zhang, Y., Narayan, M., Wu, W., Toll, R. T., Naparstek, S., … Etkin, A. (2020). Individual patterns of abnormality in resting-state functional connectivity reveal Two data-driven PTSD subgroups. The American Journal of Psychiatry, 177(3), 244253. https://doi.org/10.1176/appi.ajp.2019.19010060.CrossRefGoogle ScholarPubMed
Marx, B. P., Thompson-Hollands, J., Lee, D. J., Resick, P. A., & Sloan, D. M. (2020). Estimated intelligence moderates cognitive processing therapy outcome for posttraumatic stress symptoms. Behavior Therapy, 52(1), 162−169. https://doi.org/10.1016/j.beth.2020.03.008.Google ScholarPubMed
McGlinchey, R. E., Milberg, W. P., Fonda, J. R., & Fortier, C. B. (2017). A methodology for assessing deployment trauma and its consequences in OEF/OIF/OND veterans: The TRACTS longitudinal prospective cohort study. International Journal of Methods in Psychiatric Research, 26(3), 115. https://doi.org/10.1002/mpr.1556.CrossRefGoogle ScholarPubMed
McLaughlin, K. A., Hatzenbuehler, M. L., Mennin, D. S., & Nolen-Hoeksema, S. (2011). Emotion dysregulation and adolescent psychopathology: A prospective study. Behaviour Research and Therapy, 49(9), 544554. https://doi.org/10.1016/j.brat.2011.06.003.CrossRefGoogle ScholarPubMed
Mclaughlin, K. A., Lambert, H. K., Opin, C., & Author, P. (2017). Child trauma exposure and psychopathology: Mechanisms of risk and resilience HHS public access author manuscript. Current Opinion in Psychology, 14, 2934. https://doi.org/10.1016/j.copsyc.2016.10.004.Child.CrossRefGoogle Scholar
Mclaughlin, K. A., Peverill, M., Gold, A. L., Alves, S., & Sheridan, M. A. (2015). Child maltreatment and neural systems underlying emotion regulation Katie. Journal of the American Academy of Child & Adolescent Psychiatry, 54(9), 753762. https://doi.org/10.1016/j.jaac.2015.06.010.CrossRefGoogle Scholar
Melrose, R. J., Jimenez, A. M., Riskin-Jones, H., Weissberger, G., Veliz, J., Hasratian, A. S., … Sultzer, D. L. (2018). Alterations to task positive and task negative networks during executive functioning in mild cognitive impairment. NeuroImage: Clinical, 19(February), 970981. https://doi.org/10.1016/j.nicl.2018.06.014.CrossRefGoogle ScholarPubMed
Melzack, R., & Katz, J. (2013). McGill pain questionnaire. In Gebhart, G. F., & Schmidt, R. F., (eds), Encyclopedia of pain. Berlin, Heidelberg: Springer, pp. 17921794. https://doi.org/10.1007/978-3-642-28753-4_2298.CrossRefGoogle Scholar
Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483506. https://doi.org/10.1016/j.tics.2011.08.003.CrossRefGoogle ScholarPubMed
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214(5–6), 655667. https://doi.org/10.1007/s00429-010-0262-0.CrossRefGoogle ScholarPubMed
Misaki, M., Phillips, R., Zotev, V., Wong, C. K., Wurfel, B. E., Krueger, F., … Bodurka, J. (2018). Connectome-wide investigation of altered resting-state functional connectivity in war veterans with and without posttraumatic stress disorder. NeuroImage: Clinical, 17(April 2017), 285296. https://doi.org/10.1016/j.nicl.2017.10.032.CrossRefGoogle ScholarPubMed
Nicholson, A. A., Densmore, M., Frewen, P. A., Théberge, J., Neufeld, R. W. J., McKinnon, M. C., & Lanius, R. A. (2015). The dissociative subtype of posttraumatic stress disorder: Unique resting-state functional connectivity of basolateral and centromedial amygdala complexes. Neuropsychopharmacology, 40(10), 23172326. https://doi.org/10.1038/npp.2015.79.CrossRefGoogle ScholarPubMed
Nicholson, A. A., Harricharan, S., Densmore, M., Neufeld, R. W. J., Ros, T., McKinnon, M. C., … Lanius, R. A. (2020). Classifying heterogeneous presentations of PTSD via the default mode, central executive, and salience networks with machine learning. NeuroImage: Clinical, 27(November 2019), 102262. https://doi.org/10.1016/j.nicl.2020.102262.CrossRefGoogle ScholarPubMed
Nicholson, A. A., Rabellino, D., Densmore, M., Frewen, P. A., Paret, C., Kluetsch, R., … Lanius, R. A. (2017). The neurobiology of emotion regulation in posttraumatic stress disorder: Amygdala downregulation via real-time fMRI neurofeedback. Human Brain Mapping, 38(1), 541560. https://doi.org/10.1002/hbm.23402.CrossRefGoogle ScholarPubMed
Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012). Review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251, E1E24. https://doi.org/10.1111/j.1749-6632.2012.06751.x.Functional.CrossRefGoogle ScholarPubMed
Pineles, S. L., Mostoufi, S. M., Ready, C. B., Street, A. E., Griffin, M. G., & Resick, P. A. (2011). Trauma reactivity, avoidant coping, and PTSD symptoms: A moderating relationship? Journal of Abnormal Psychology, 120(1), 240246. https://doi.org/10.1037/a0022123.CrossRefGoogle ScholarPubMed
Pitman, R. K., Rasmusson, A. M., Koenen, K. C., Shin, L. M., Orr, S. P., Gilbertson, M. W., … Liberzon, I. (2012). Biological studies of post-traumatic stress disorder. Nature Reviews. Neuroscience, 13(11), 769787. https://doi.org/10.1038/nrn3339.CrossRefGoogle ScholarPubMed
Rabellino, D., Densmore, M., Harricharan, S., Jean, T., McKinnon, M. C., & Lanius, R. A. (2018a). Resting-state functional connectivity of the bed nucleus of the stria terminalis in post-traumatic stress disorder and its dissociative subtype. Human Brain Mapping, 39(3), 13671379. https://doi.org/10.1002/hbm.23925.CrossRefGoogle ScholarPubMed
Rabellino, D., Densmore, M., Théberge, J., McKinnon, M. C., & Lanius, R. A. (2018b). The cerebellum after trauma: Resting-state functional connectivity of the cerebellum in posttraumatic stress disorder and its dissociative subtype. Human Brain Mapping, 39(8), 33543374. https://doi.org/10.1002/hbm.24081.CrossRefGoogle ScholarPubMed
Rabinak, C. A., MacNamara, A., Kennedy, A. E., Angstadt, M., Stein, M. B., Liberzon, I., & Phan, K. L. (2014). Focal and aberrant prefrontal engagement during emotion regulation in veterans with posttraumatic stress disorder. Depression and Anxiety, 31(10), 851861. https://doi.org/10.1002/da.22243.Focal.CrossRefGoogle ScholarPubMed
Riley, E., Mitko, A., Stumps, A., Robinson, M., Milberg, W., McGlinchey, R., … DeGutis, J. (2019). Clinically significant cognitive dysfunction in OEF/OIF/OND veterans: Prevalence and clinical associations. Neuropsychology, 33(4), 534546. https://doi.org/10.1037/neu0000529.CrossRefGoogle ScholarPubMed
Ruscio, A. M., Rusciob, J., & Keane, T. M. (2002). The latent structure of posttraumatic stress disorder: A taxometric investigation of reactions to extreme stress. Journal of Abnormal Psychology, 111(2), 290301. https://doi.org/10.1037/0021-843X.111.2.290.CrossRefGoogle ScholarPubMed
Russman Block, S., King, A. P., Sripada, R. K., Weissman, D. H., Welsh, R., & Liberzon, I. (2017). Behavioral and neural correlates of disrupted orienting attention in posttraumatic stress disorder. Cognitive, Affective and Behavioral Neuroscience, 17(2), 422436. https://doi.org/10.3758/s13415-016-0488-2.CrossRefGoogle ScholarPubMed
Santhanam, P., Wilson, S. H., Oakes, T. R., & Weaver, L. K. (2019). Effects of mild traumatic brain injury and post-traumatic stress disorder on resting-state default mode network connectivity. Brain Research, 1711(January), 7782. https://doi.org/10.1016/j.brainres.2019.01.015.CrossRefGoogle ScholarPubMed
Scott, J. C., Matt, G. E., Wrocklage, K. M., Crnich, C., Jordan, J., Southwick, S. M., … Schweinsburg, B. C. (2015). A quantitative meta-analysis of neurocognitive functioning in posttraumatic stress disorder. Psychological Bulletin, 141(1), 105140. https://doi.org/10.1037/a0038039.CrossRefGoogle ScholarPubMed
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 23492356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007.CrossRefGoogle ScholarPubMed
Sheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N., Snyder, A. Z., … Raichle, M. E. (2009). The default mode network and self-referential processes in depression. Proceedings of the National Academy of Sciences, 106(6), 19421947. https://doi.org/10.1073/pnas.0812686106.CrossRefGoogle ScholarPubMed
Skinner, H. A., & Sheu, W.-J. (1982). Reliability of alcohol use indices. The lifetime drinking history and the MAST. Journal of Studies on Alcohol, 43(11), 11571170.CrossRefGoogle ScholarPubMed
Spreng, R. N., Mar, R. A., & Kim, A. S. N. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489510. https://doi.org/10.1162/jocn.2008.21029.CrossRefGoogle Scholar
Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage, 53(1), 303317. https://doi.org/10.1016/j.neuroimage.2010.06.016.CrossRefGoogle ScholarPubMed
Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences, 105(34), 1256912574. https://doi.org/10.1073/pnas.0800005105.CrossRefGoogle ScholarPubMed
Sripada, R. K., King, A. P., Welsh, R. C., Garfinkel, S. N., Wang, X., Sripada, C. S., & Liberzon, I. (2012a). Neural dysregulation in posttraumatic stress disorder: Evidence for disrupted equilibrium between salience and default mode brain networks. Psychosomatic Medicine, 74(9), 904911. https://doi.org/10.1097/PSY.0b013e318273bf33.CrossRefGoogle ScholarPubMed
Sripada, R. K., King, A. P., Welsh, R. C., Garfinkel, S. N., Wang, X., Sripada, C. S., … Liberzon, I. (2012b). Neural dysregulation in posttraumatic stress disorder. Psychosomatic Medicine, 74(9), 904911. https://doi.org/10.1097/psy.0b013e318273bf33.CrossRefGoogle ScholarPubMed
Stricker, N. H., Lippa, S. M., Green, D. L., McGlynn, S. M., Grande, L. J., Milberg, W. P., & McGlinchey, R. E. (2017). Elevated rates of memory impairment in military service-members and veterans with posttraumatic stress disorder. Journal of Clinical and Experimental Neuropsychology, 39(8), 768785. https://doi.org/10.1080/13803395.2016.1264575.CrossRefGoogle ScholarPubMed
Swick, D., Honzel, N., Larsen, J., & Ashley, V. (2013). Increased response variability as a marker of executive dysfunction in veterans with post-traumatic stress disorder. Neuropsychologia, 51(14), 30333040. https://doi.org/10.1016/j.neuropsychologia.2013.10.008.CrossRefGoogle ScholarPubMed
Swick, D., Honzel, N., Larsen, J., Ashley, V., & Justus, T. (2012). Impaired response inhibition in veterans with post-traumatic stress disorder and mild traumatic brain injury. Journal of the International Neuropsychological Society : JINS, 18(5), 917926. https://doi.org/10.1017/S1355617712000458.CrossRefGoogle ScholarPubMed
Tullo, S., Devenyi, G. A., Patel, R., Park, M. T. M., Collins, D. L., & Chakravarty, M. M. (2018). Warping an atlas derived from serial histology to 5 high-resolution MRIs. Scientific Data, 5, 110. https://doi.org/10.1038/sdata.2018.107.CrossRefGoogle ScholarPubMed
Van Rooij, S. J. H., Kennis, M., Vink, M., & Geuze, E. (2016). Predicting treatment outcome in PTSD: A longitudinal functional MRI study on trauma-unrelated emotional processing. Neuropsychopharmacology, 41(4), 11561165. https://doi.org/10.1038/npp.2015.257.CrossRefGoogle Scholar
Vasterling, J. J., Duke, L. M., Brailey, K., Constans, J. I., Allain, A. N., & Sutker, P. B. (2002). Attention, learning, and memory performances and intellectual resources in Vietnam veterans: PTSD and no disorder comparisons. Neuropsychology, 16(1), 514.CrossRefGoogle ScholarPubMed
Venegas, J., & Clark, E. (2011). Wechsler test of adult reading. In Kreutzer, J. S., DeLuca, J., & Caplan, B. (Eds.), Encyclopedia of clinical neuropsychology (pp. 26932694). New York, NY: Springer. https://doi.org/10.1007/978-0-387-79948-3_1500.CrossRefGoogle Scholar
Wen, T., Mitchell, D. J., & Duncan, J. (2020). The functional convergence and heterogeneity of social, episodic, and self-referential thought in the default mode network. Cerebral Cortex, 30(11), 59155929. https://doi.org/10.1093/cercor/bhaa166.CrossRefGoogle ScholarPubMed
Williams, L. M. (2017). Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: A theoretical review of the evidence and future directions for clinical translation. Depression and Anxiety, 34(1), 924. https://doi.org/10.1002/da.22556.CrossRefGoogle ScholarPubMed
Xia, C. H., Ma, Z., Ciric, R., Gu, S., Betzel, R. F., Kaczkurkin, A. N., … Satterthwaite, T. D. (2018). Linked dimensions of psychopathology and connectivity in functional brain networks. Nature Communications, 9(1), 114. https://doi.org/10.1038/s41467-018-05317-y.CrossRefGoogle ScholarPubMed
Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 11251165. https://doi.org/10.1152/jn.00338.2011.Google ScholarPubMed
Zandvakili, A., Barredo, J., Swearingen, H. R., Aiken, E. M., Berlow, Y. A., Greenberg, B. D., … Philip, N. S. (2020). Mapping PTSD symptoms to brain networks: A machine learning study. Translational Psychiatry, 10(1). https://doi.org/10.1038/s41398-020-00879-2.CrossRefGoogle ScholarPubMed
Zhu, X., Helpman, L., Papini, S., Schneier, F., Markowitz, J. C., Van Meter, P. E., … Neria, Y. (2017). Altered resting state functional connectivity of fear and reward circuitry in comorbid PTSD and major depression. Depression and Anxiety, 34(7), 641650. https://doi.org/10.1016/j.physbeh.2017.03.040.CrossRefGoogle ScholarPubMed
Zilcha-Mano, S., Zhu, X., Suarez-Jimenez, B., Pickover, A., Tal, S., Such, S., … Rutherford, B. R. (2020). Diagnostic and predictive neuroimaging biomarkers for posttraumatic stress disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(7), 688696. https://doi.org/10.1016/j.bpsc.2020.03.010.Google ScholarPubMed
Zoellner, L. A., Pruitt, L. D., Farach, F. J., & Jun, J. J. (2014). Understanding heterogeneity in PTSD: Fear, dysphoria, and distress. In Depression and Anxiety. https://doi.org/10.1002/da.22133.CrossRefGoogle Scholar
Supplementary material: File

Jagger-Rickels et al. supplementary material

Jagger-Rickels et al. supplementary material

Download Jagger-Rickels et al. supplementary material(File)
File 66.1 KB