Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T12:46:14.381Z Has data issue: false hasContentIssue false

What Shapes Supernova Remnants?

Published online by Cambridge University Press:  29 January 2014

Laura A. Lopez*
Affiliation:
MIT-Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Ave., 37-664H, Cambridge, MA 02139 email: lopez@space.mit.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Evidence has mounted that Type Ia and core-collapse (CC) supernovae (SNe) can have substantial deviations from spherical symmetry; one such piece of evidence is the complex morphologies of supernova remnants (SNRs). However, the relative role of the explosion geometry and the environment in shaping SNRs remains an outstanding question. Recently, we have developed techniques to quantify the morphologies of SNRs, and we have applied these methods to the extensive X-ray and infrared archival images available of Milky Way and Magellanic Cloud SNRs. In this proceeding, we highlight some results from these studies, with particular emphasis on SNR asymmetries and whether they arise from “nature” or “nurture”.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Blondin, J. M., & Mezzacappa, A. 2007 Nature, 445, 58Google Scholar
Buote, D. A. & Tsai, J. C. 1995, ApJ, 452, 522Google Scholar
Buote, D. A. & Tsai, J. C. 1996, ApJ, 458, 27CrossRefGoogle Scholar
Burrows, A., Livne, E., Dessart, L., Ott, C. D., & Murphy, J. 2007, ApJ, 655, 416Google Scholar
Canizares, C. R. 2004, Frontiers of X-ray astronomy, 107–116Google Scholar
DeLaney, T., Rudnick, L., Stage, M. D., et al. 2010, ApJ, 725, 2038Google Scholar
Faucher-Giguère, C.-A. & Kaspi, V. M. 2006, ApJ, 643, 332Google Scholar
Jeltema, T. E., Canizares, C. R., Bautz, M. W., & Buote, D. A. 2005, ApJ, 624, 606CrossRefGoogle Scholar
Kasen, D., Röpke, F. K., & Woosley, S. E. 2009, Nature, 460, 869CrossRefGoogle Scholar
Lopez, L. A., Ramirez-Ruiz, E., Pooley, D. A., & Jeltema, T. E. 2009a, ApJ, 691, 875CrossRefGoogle Scholar
Lopez, L. A., Ramirez-Ruiz, E., Badenes, C., Huppenkothen, D., Jeltema, T. E., & Pooley, D. A. 2009b, ApJ (Letters), 706, L106Google Scholar
Lopez, L. A., Ramirez-Ruiz, E., Huppenkothen, D., Badenes, C., & Pooley, D. A. 2011, ApJ, 732, 114CrossRefGoogle Scholar
Lyne, A. G. & Lorimer, D. R. 1994, Nature, 369, 127CrossRefGoogle Scholar
Maeda, K., Taubenberger, S., Sollerman, J., et al. 2010, ApJ, 708, 1703Google Scholar
Mazzali, P. A., Nomoto, K., Patat, F., & Maeda, K. 2001, ApJ, 559, 1047Google Scholar
Peters, C. L., Lopez, L. A., Ramirez-Ruiz, E., Stassun, K. G., & Figueroa-Feliciano, E. 2013, submitted to ApJ (Letters)Google Scholar
Rest, A., Foley, R. J., Sinnott, B., et al. 2011, ApJ, 732, 3Google Scholar
Reynolds, S. P., Borkowski, K. J., Hwang, U., et al. 2007, ApJ (Letters), 668, L135Google Scholar
Scheck, L., Plewa, T., Janka, H.-T., Kifonidis, K., & Müller, E. 2004, Phys. Rev. Lett., 92, 011103CrossRefGoogle Scholar
Wang, L. & Wheeler, J. C. 2008, ARAA, 46, 433Google Scholar
Wardle, M., & Yusef-Zadeh, F. 2002 Science, 296, 2350CrossRefGoogle Scholar