Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T21:52:18.175Z Has data issue: false hasContentIssue false

Testing Gravity using Void Profiles

Published online by Cambridge University Press:  12 October 2016

Yan-Chuan Cai
Affiliation:
Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, Durham DH1 3LE, UK email: y.c.cai@durham.ac.uk
Nelson Padilla
Affiliation:
Instituto de Astrofísica, Pontificia Universidad Católica, Av. Vicuña Mackenna 4860, Santiago, Chile Centro de Astro-Ingeniería, Pontificia Universidad Católica, Av. Vicuña Mackenna 4860, Santiago, Chile
Baojiu Li
Affiliation:
Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, Durham DH1 3LE, UK email: y.c.cai@durham.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate void properties in f(R) models using N-body simulations, focusing on their differences from General Relativity (GR) and their detectability. In the Hu-Sawicki f(R) modified gravity (MG) models, the halo number density profiles of voids are not distinguishable from GR. In contrast, the same f(R) voids are more empty of dark matter, and their profiles are steeper. This can in principle be observed by weak gravitational lensing of voids, for which the combination of a spectroscopic redshift and a lensing photometric redshift survey over the same sky is required. Neglecting the lensing shape noise, the f(R) model parameter amplitudes fR0=10-5 and 10-4 may be distinguished from GR using the lensing tangential shear signal around voids by 4 and 8 σ for a volume of 1 (Gpc/h)3. The line-of-sight projection of large-scale structure is the main systematics that limits the significance of this signal for the near future wide angle and deep lensing surveys. For this reason, it is challenging to distinguish fR0=10-6 from GR. We expect that this can be overcome with larger volume. The halo void abundance being smaller and the steepening of dark matter void profiles in f(R) models are unique features that can be combined to break the degeneracy between fR0 and σ8.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Albrecht, A., Bernstein, G., Cahn, R., Freedman, W. L., Hewitt, J., Hu, W., Huth, J., Kamionkowski, M., Kolb, E. W., Knox, L., Mather, J. C., Staggs, S., & Suntzeff, N. B., 2006, ArXiv Astrophysics e-printsGoogle Scholar
Anderson, L., Aubourg, É., Bailey, S., Beutler, F., Bhardwaj, V., Blanton, M., Bolton, A. S., Brinkmann, J., et al. 2014, MNRAS, 441, 24 CrossRefGoogle Scholar
Beutler, F., Saito, S., Seo, H.-J., Brinkmann, J., Dawson, K. S., Eisenstein, D. J., Font-Ribera, A., Ho, S., et al. 2013, ArXiv e-printsGoogle Scholar
Cai, Y.-C. & Bernstein, G., 2012, MNRAS, 422, 1045 CrossRefGoogle Scholar
Cai, Y.-C., Padilla, N., & Li, B. 2014, arXiv:1410.1510Google Scholar
Bernstein, G. M. & Cai, Y.-C., 2011, MNRAS, 416, 3009 CrossRefGoogle Scholar
Clampitt, J., Cai, Y.-C., & Li, B., 2013, MNRAS, 431, 749 CrossRefGoogle Scholar
Clampitt, J. & Jain, B., 2014, ArXiv e-printsGoogle Scholar
de Putter, R., Doré, O., & Takada, M., 2013, ArXiv e-printsGoogle Scholar
Gaztañaga, E., Eriksen, M., Crocce, M., Castander, F. J., Fosalba, P., Marti, P., Miquel, R., & Cabré, A., 2012, MNRAS, 422, 2904 CrossRefGoogle Scholar
Higuchi, Y., Oguri, M., & Hamana, T., 2013, MNRAS, 432, 1021 CrossRefGoogle Scholar
Kirk, D., Lahav, O., Bridle, S., Jouvel, S., Abdalla, F. B., & Frieman, J. A., 2013, ArXiv e-printsGoogle Scholar
Hu, W. & Sawicki, I., 2007, Phys. Rev. D, 76, 064004 CrossRefGoogle Scholar
Khoury, J. & Weltman, A., 2004, Phys. Rev.Lett., 93, 171104 CrossRefGoogle Scholar
Knollmann, S. R. & Knebe, A., 2009, ApJ, 182, 608 Google Scholar
Krause, E., Chang, T.-C., Doré, O., & Umetsu, K., 2013, ApJ, 762, L20 CrossRefGoogle Scholar
Laureijs, R., Amiaux, J., Arduini, S., Augueres, J.-L., Brinchmann, J., Cole, R., Cropper, M., Dabin, C., et al. 2011 Google Scholar
Li, B., Zhao, G., Teyssier, R., & Koyama, K., 2012, J. Cosmo. Astropart. Phys., 01, 051 CrossRefGoogle Scholar
McDonald, P. & Seljak, U., 2009, JCAP, 10, 7 CrossRefGoogle Scholar
Nadathur, S., Hotchkiss, S., Diego, J. M., Iliev, I. T., Gottlöber, S., Watson, W. A., & Yepes, G., 2014, ArXiv e-printsGoogle Scholar
Neyrinck, M. C., Gnedin, N. Y., & Hamilton, A. J. S., 2005, MNRAS, 356, 1222 CrossRefGoogle Scholar
Padilla, N. D., Ceccarelli, L., & Lambas, D., 2005, MNRAS, 363, 977 CrossRefGoogle Scholar
Sánchez, A. G., Montesano, F., Kazin, E. A., Aubourg, E., Beutler, F., Brinkmann, J., Brownstein, J. R., Cuesta, A. J., Dawson, K. S., Eisenstein, D. J., Ho, S., et al. 2014, MNRAS, 440, 2692 CrossRefGoogle Scholar
Sheth, R. K. & van de Weygaert, R., 2004, MNRAS, 350, 517 CrossRefGoogle Scholar
Sutter, P. M., Lavaux, G., Wandelt, B. D., Weinberg, D. H., & Warren, M. S., 2014, MNRAS, 438, 3177 CrossRefGoogle Scholar
Vainshtein, A. I., 1972, Physics Letters B, 39, 393 CrossRefGoogle Scholar
Zhang, P., Liguori, M., Bean, R., & Dodelson, S. 2007, Physical Review Letters, 99, 141302 CrossRefGoogle Scholar