Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T10:44:28.377Z Has data issue: false hasContentIssue false

On the onset of dust formation in AGB stars

Published online by Cambridge University Press:  30 December 2019

David Gobrecht
Affiliation:
Institute of Astronomy, KU Leuven, B-3001, Leuven, Belgium email: david.gobrecht@kuleuven.be
Stefan T. Bromley
Affiliation:
Departament de Ciència de Materials i Química Física & Institut de Química Téorica i Computacional (IQTCUB), Universitat de Barcelona, E-08028 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), E-08010 Barcelona, Spain
John M. C. Plane
Affiliation:
School of Chemistry, Leeds University, Box 515, GB-75120 Leeds, Great Britain
Leen Decin
Affiliation:
Institute of Astronomy, KU Leuven, B-3001, Leuven, Belgium email: david.gobrecht@kuleuven.be
Sergio Cristallo
Affiliation:
INAF - Osservatorio Astronomico dAbruzzo, Via mentore maggini, I-64100 Teramo, Italy INFN - Sezione di Perugia, via A. Pascoli, I-06123, Perugia, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A promising candidate to initiate dust formation in oxygen-rich AGB stars is alumina (Al2O3) showing an emission feature around ∼13μm attributed to Al−O stretching and bending modes (Posch+99,Sloan+03). The counterpart to alumina in carbon-rich AGB atmospheres is the highly refractory silicon carbide (SiC) showing a characteristic feature around 11.3μm (Treffers74). Alumina and SiC grains are thought to represent the first condensates to emerge in AGB stellar atmospheres. We follow a bottom-up approach, starting with the smallest stoichiometric clusters (i.e. Al4O6, Si2C2), successively building up larger-sized clusters. We present new results of quantum-mechanical structure calculations of (Al2O3)n, n = 1−10 and (SiC)n clusters with n = 1−16, including potential energies, rotational constants, and structure-specific vibrational spectra. We demonstrate the energetic viability of homogeneous nucleation scenarios where monomers (Al2O3 and SiC) or dimers (Al4O6 and Si2C2) are successively added. We find significant differences between our quantum theory based results and nanoparticle properties derived from (classical) nucleation theory.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Al-Sunaidi, A. A., Sokol, A. A., Catlow, C. R. A., Woodley, S. M. 2008, JPCC, 112, 18860 Google Scholar
Agúndez, M., Cernicharo, J., Guélin, M., 2010, ApJ, 724, 133 10.1088/2041-8205/724/2/L133CrossRefGoogle Scholar
Becke, A. D. 1993, JCP, 98, 1372 Google Scholar
Brenner, D. W. 1990, Phys. Rev. B, 42, 9458 10.1103/PhysRevB.42.9458CrossRefGoogle Scholar
Bromley, S. T., Gómez-Martín, J. C., Plane, J. M. C. 2016, PCCP, 18, 26913 10.1039/C6CP03629ECrossRefGoogle Scholar
Bush, T. S., Gale, J. D., Catlow, C. R. A., Battle, P. D. 1994, JMC, 4, 831 Google Scholar
Byrd, J. N. and Lutz, J. J., Ranasinghe, Jin, Y., D. S., Montgomery, J. A., Perera, A ., Duan, X. F., Burggraf, L. W., Sanders, B. A., Bartlett, R.J. 2016, JCP, 145, 24312 Google Scholar
Chen, M., Felmy, A. R., Dixon, D. A. 2014, JPCA, 118, 3136 10.1021/jp412820zCrossRefGoogle Scholar
Decin, L., De Beck, E., Brnken, S., Mller, H. S. P., Menten, K. M., Kim, H., Willacy, K., de Koter, A., Wyrowski, F. 2010, A&A, 516, 69 Google Scholar
Decin, L., Justtanont, K., De Beck, E., Lombaert, R., de Koter, A., Waters, L. B. F. M., Marston, A. P., Teyssier, D., Schier, F. L., Bujarrabal, V., Alcolea, J., Cernicharo, J., Dominik, C., Melnick, G., Menten, K., Neufeld, D. A., Olofsson, H., Planesas, P., Schmidt, M., Szczerba, R., de Graauw, T., Helmich, F., Roelfsema, P., Dieleman, P., Morris, P., Gallego, J. D., Dez-Gonzlez, M. C., Caux, E. 2010, A&A, 521, 4 Google Scholar
Decin, L., Richards, A. M. S., Waters, L. B. F. M., Danilovich, T., Gobrecht, D., Khouri, T., Homan, W., Bakker, J. M., Van de Sande, M., Nuth, J. A., De Beck, E. 2017, A&A, 608, 55 Google Scholar
Demiroglu, I., Tosoni, S. and Illas, F., Bromley, S. T. 2014, Nanoscale 6, 1181 10.1039/C3NR04028CCrossRefGoogle Scholar
Duan, X. F., Burggraf, L. W., Huang, L. 2013, Molecules, 18, 8591 10.3390/molecules18078591CrossRefGoogle Scholar
Erhart, P., Albe, K. 2005, Phys. Rev. B, 71, 35211 10.1103/PhysRevB.71.035211CrossRefGoogle Scholar
Gale, J. D. 1997, JCS, Faraday Trans., 93, 629 10.1039/a606455hCrossRefGoogle Scholar
Gobrecht, D., Cherchneff, I., Sarangi, A., Plane, J. M. C., Bromley, S. T. 2016, A&A, 585, 15 Google Scholar
Gobrecht, D., Cristallo, S., Piersanti, L., Bromley, S. T. ApJ, 840, 117 10.3847/1538-4357/aa6db0CrossRefGoogle Scholar
Gobrecht, D., Decin, L., Cristallo, S., Bromley, S. T. CPLett, 711, 138 10.1016/j.cplett.2018.09.018CrossRefGoogle Scholar
Goumans, T. P. M., Bromley, S. T. 2012, MNRAS, 420, 3344 Google Scholar
Habing, H. J., Olofsson, H. 2003, Asymptotic giant branch stars, Astronomy and astrophysics library, New York, Berlin: Springer 10.1007/978-1-4757-3876-6CrossRefGoogle Scholar
Henning, Th. 2010, Lecture Notes in Physics, 815Google Scholar
Hoefner, S., Gautschy Loidl, R., Aringer, B., Jørgensen, U.G. 2003, A&A, 399, 589 Google Scholar
Hou, J., Song, B. 2008, JCP, 128, 154304 Google Scholar
Johansson, L. E. B., Andersson, C., Ellder, J., Friberg, P., Hjalmarson, A., Hoglund, B., Irvine, W. M., Olofsson, H., Rydbeck, G. 1984, A&A, 130, 227 Google ScholarPubMed
Justtanont, K., Feuchtgruber, H., de Jong, T., Cami, J., Waters, L. B. F. M., Yamamura, I., Onaka, T. 1998, A&A, 330, 17 Google Scholar
Karovicova, I., Wittkowski, M., Ohnaka, K., Boboltz, D. A., Fossat, E., Scholz, M. 2013, A&A, 560, 75 Google Scholar
Koehler, T. M., Gail, H.-P., Sedlmayr, E. 1997, A&A, 320, 553 Google Scholar
Lamiel-Garcia, O., Ko, K. C., Lee, J. Y., Bromley, S. T., Illas, F. JCTC, 13, 1785 Google Scholar
Li, R., Cheng, L. 2012, CTP, 996, 125 Google Scholar
Lindqvist, M., Nyman, L.-A., Olofsson, H., Winnberg, A. 1988, A&A, 205, 15 Google Scholar
McQuarrie, D. A., Simon, J. D. 1999, University Science BooksGoogle Scholar
Neufeld, D. A., Gonzlez-Alfonso, E., Melnick, G. J., Szczerba, R., Schmidt, M., Decin, L, de Koter, A., Schier, F., Cernicharo, J. 2011, APJL, 727, 28 10.1088/2041-8205/727/2/L28CrossRefGoogle Scholar
Peverati, R., Truhlar, D. G. 2012, JPCL 3, 117 Google Scholar
Posch, T., Kerschbaum, F., Mutschke, H., Fabian, D., Dorschner, J., Hron, J. 1999, A&A, 352, 609 Google Scholar
Pradhan, P., Ray, A. K. 2004, ArXiv Physics e-prints, 0408016Google Scholar
Sloan, G. C., Kraemer, K. E., Goebel, J. H., Price, S. D. 2003, ApJ, 594, 483 10.1086/376857CrossRefGoogle Scholar
Stillinger, F. H. & Weber, T. A. 1985, 31, 5262 10.1103/PhysRevB.31.5262CrossRefGoogle Scholar
Stroud, R. M., Nittler, L. R., Alexander, C. M. O’D. 2004, Science 305, 1455 10.1126/science.1101099CrossRefGoogle Scholar
Tersoff, J. 1989, Phys. Rev. B, 39, 5566 10.1103/PhysRevB.39.5566CrossRefGoogle Scholar
Treffers, R., Cohen, M. 1974, ApJ 188, 545 10.1086/152746CrossRefGoogle Scholar
Van de Sande, M., Sundqvist, J. O., Millar, T. J., Keller, D., Homan, W., de Koter, A., Decin, L., De Ceuster, F. 2018, A&A, 616, 106 Google Scholar
Van Duin, A. C. T., Dasgupta, F., Lorant, F. Goddard, W. A. 2001, JPCA, 105, 9396 10.1021/jp004368uCrossRefGoogle Scholar
Vashishta, P., Kalia, R. K., Nakano, A., Rino, J. P. 2007, JAP 10, 101 Google Scholar
Wales, D. J., Doye, J. P. K. 1997, JPCA, 101, 5111 10.1021/jp970984nCrossRefGoogle Scholar
Watkins, M. B., Shevlin, S. A., Sokol, A. A., Slater, B., Catlow, C. R. A., Woodley, S. M. PCCP, 11, 3186 10.1039/b902603gCrossRefGoogle Scholar
Wetzel, S., Klevenz, M., Gail, H.-P., Pucci, A., Trieloff, M. A&A, 553, 92 Google Scholar
Whitmore, L., Sokol, A. A., Catlow, C. R. A. 2002, Surface science, 498, 135 10.1016/S0039-6028(01)01588-6CrossRefGoogle Scholar
Wright, K., Jackson, R. A. 1995, JMC, 5, 2037 Google Scholar
Woitke, P. 2006, A&A, 460, 9 Google Scholar