Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T10:03:54.119Z Has data issue: false hasContentIssue false

NIHAO-UHD: High-resolution Simulations of MW mass galaxies

Published online by Cambridge University Press:  02 August 2018

Tobias Buck
Affiliation:
Max-Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
Andrea Macciò
Affiliation:
New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
Melissa Ness
Affiliation:
Max-Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
Aura Obreja
Affiliation:
Universitäts-Sternwarte München, Scheinerstrae 1, D-81679 München, Germany
Aaron Dutton
Affiliation:
New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High resolution cosmological and hydrodynamical simulations have reached a resolution able to resolve in a self consistent way the disc of our galaxy, the galaxy center and the satellites orbiting around it. We present first results from the NIHAO-UHD project, a set of very high-resolution baryonic zoom-in simulations of Milky Way mass disc galaxies. These simulations model the full cosmological assembly history of the galaxies and their satellite system using the same, well tested physics as the NIHAO project. We show that these simulations can self-consistently reproduce the observed kinematical and morphological features of the X-shaped bulge observed in our own Milky Way.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Athanassoula, E. & Martinez-Valpuesta, I.. ASSP, 8:77, 2009.Google Scholar
Athanassoula, E., Rodionov, S. A., & Prantzos, N.. MNRAS, 467:L46L50, May 2017.Google Scholar
Bensby, T., Feltzing, S., Gould, A., et al. ArXiv e-prints, July 2017.Google Scholar
Bensby, T., Feltzing, S., Gould, A., et al. ArXiv e-prints, February 2017.Google Scholar
Buck, T., Macciò, A. V., Obreja, A., et al. MNRAS, 468, 3628, July 2017Google Scholar
Bureau, M. & Athanassoula, E.. ApJ, 626:159173, June 2005.Google Scholar
Debattista, V. P., Mayer, L., Carollo, C. M., et al. ApJ, 645:209227, July 2006.Google Scholar
Debattista, V. P., Ness, M., Gonzalez, O. A., et al. MNRAS, 469, 1587, August 2017.Google Scholar
Dutton, A. A., Obreja, A., Wang, L., et al. MNRAS, 467, 4937, June 2017Google Scholar
Freeman, K., Ness, M., Wylie-de-Boer, E., et al. MNRAS, 428:36603670, February 2013.Google Scholar
Gerhard, O.. Astronomical Society of the Pacific Conference Series, page 73, 2002.Google Scholar
Gutcke, T. A., Stinson, G. S., Macciò, A. V., et al. MNRAS, October 2016.Google Scholar
Howard, C. D., Rich, R. M., Reitzel, D. B., et al. ApJ, 688:10601077, December 2008.Google Scholar
Majewski, S. R., Schiavon, R. P., Frinchaboy, P. M., et al. ArXiv e-prints, September 2015.Google Scholar
McWilliam, A. & Zoccali, M.. ApJ, 724:14911502, December 2010.Google Scholar
Nataf, D. M., Udalski, A., Gould, A., et al. ApJ, 721, L28, September 2010.Google Scholar
Ness, M., Freeman, K., Athanassoula, E., et al. MNRAS, 430:836857, April 2013.Google Scholar
Ness, M., Freeman, K., Athanassoula, E., et al. MNRAS, 432:20922103, July 2013.Google Scholar
Obreja, A., Stinson, G. S., Dutton, A. A., et al. MNRAS, 459:467486, June 2016.Google Scholar
Okuda, H., Maihara, T., Oda, N., et al. Nature, 265:515, February 1977.Google Scholar
Planck Collaboration A&A, 571:A16, November 2014.Google Scholar
Portail, M., Wegg, C., & Gerhard, O.. MNRAS, 450:L66L70, June 2015.Google Scholar
Portail, M., Wegg, C., Gerhard, O., et al. MNRAS, 448:713731, March 2015.Google Scholar
Rojas-Arriagada, A., Recio-Blanco, A., Hill, V., et al. A&A, 569:A103, September 2014.Google Scholar
Wang, L., Dutton, A. A., Stinson, G. S., et al. MNRAS, 454:8394, November 2015.Google Scholar
Wegg, C. & Gerhard, O.. MNRAS, 435:18741887, November 2013.Google Scholar