Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T20:47:45.700Z Has data issue: false hasContentIssue false

Long-term evolution of small icy bodies of the Solar System

Published online by Cambridge University Press:  06 April 2010

Dina Prialnik*
Affiliation:
Dept. of Geophysics & Planetary Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel email: dina@planet.tau.ac.il
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Detailed evolutionary calculations spanning 4.6 × 109 yr are presented for (a) a model representing main-belt comet 133P/Elst-Pizarro, considering different initial mixtures of ices and dust, and (b) a Kuiper Belt object heated by radioactive decay, growing in size from an initial radius of 10 km to a final 250 km.

It is shown that for the main-belt comet only crystalline H2O ice may survive in the interior of the nucleus, and may be found at depths ranging from ~50 to 150 m. Other volatiles will be completely lost. For the large Kuiper Belt object, evaporation and flow of water and vapor gradually remove the water from the core and the final (present) structure is differentiated, with a rocky, highly porous core of 80 km radius. Outside the core, due to refreezing of water vapor, a compact, ice-rich layer forms, a few tens of km thick. The amorphous ice is preserved in an outer layer about 20 km thick.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Boehnhardt, H., Sekanina, Z., Fiedler, A., Rauer, H., Schulz, R., & Tozzi, G. 1998, Highlights of Astronomy, 11, 233CrossRefGoogle Scholar
Davis, D. R. & Farinella, P. 1997, Icarus, 125, 50CrossRefGoogle Scholar
Ferrín, I. 2006, Icarus, 185, 523CrossRefGoogle Scholar
Haghighipour, N. 2008, LPI, 1405, 8287Google Scholar
Hsieh, H. H., Jewitt, D. C., & Fernández, Y. R. 2004, ApJ, 127, 2997CrossRefGoogle Scholar
Hsieh, H. H., Jewitt, D., & Fernández, Y. R. 2009, ApJ Lett., 694, L111CrossRefGoogle Scholar
Hsieh, H. H., Jewitt, D., & Ishiguro, M. 2009, ApJ, 137, 157CrossRefGoogle Scholar
Jewitt, D., Chizmadia, L., Grimm, R., & Prialnik, D., 2007, in: Reipurth, B., Jewitt, D. & Keil, K. (eds.), Protostars and Planets V (Tucson: Univ. Arizona Press), p. 863Google Scholar
Jewitt, D., Lacerda, P., & Peixinho, N. 2007, IAUC 8847, 1Google Scholar
Jewitt, D., Yang, B., & Haghighipour, N. 2009, ApJ, 137, 4313CrossRefGoogle Scholar
Levison, H. F., Bottke, W. F., Nesvorný, D., Morbidelli, A., & Gounelle, M. 2008, LPI 1405, 8156Google Scholar
McKinnon, W. B., Prialnik, D., Stern, A. S., & Coradini, A. 2007, in: Barucci, M. A., Boehnhardt, H., Cruikshank, D. & Morbidelli, A. (eds.) The Solar System beyond Neptune (Tucson: Univ. Arizona Press), p. 213Google Scholar
Notesco, G. & Bar-Nun, A. 1997, Icarus, 126, 336CrossRefGoogle Scholar
Merk, R. & Prialnik, D. 2006, Icarus, 183, 283CrossRefGoogle Scholar
Podolak, M. & Prialnik, D. 2006, in: Thomas, P. J., Hicks, R. D., Chyba, C. F. & McKay, C. P. (eds.), Comets and the Origin and Evolution of Life, (Berlin: Spriger), p. 303CrossRefGoogle Scholar
Prialnik, D. 1992, ApJ, 388, 196CrossRefGoogle Scholar
Prialnik, D., Benkhoff, J., & Podolak, M. 2004, in: Festou, M. C., Keller, H. U., Weaver, H. A. & Festou, M. (eds.), Comets II, (Tucson: Univ. Arizona Press), p. 359CrossRefGoogle Scholar
Prialnik, D. & Merk, R. 2008, Icarus, 197, 211CrossRefGoogle Scholar
Prialnik, D. & Rosenberg, E. D. 2009, MNRAS, 399, L79CrossRefGoogle Scholar
Sarid, G., Prialnik, D., Meech, K. J., Pittichovà, J., & Farnham, T. L. 2005, PASP, 117, 796CrossRefGoogle Scholar
Schorghofer, N. 2008, ApJ, 682, 697CrossRefGoogle Scholar
Toth, I. 2000, A&A, 360, 375Google Scholar