Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T01:00:52.576Z Has data issue: false hasContentIssue false

HST's hunt for intermediate-mass black holes in star clusters

Published online by Cambridge University Press:  18 January 2010

Julio Chanamé
Affiliation:
Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC, USA email: jchaname@dtm.ciw.edu
Justice Bruursema
Affiliation:
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA
Rupali Chandar
Affiliation:
Department of Physics and Astronomy, The University of Toledo, Toledo, OH, USA
Jay Anderson
Affiliation:
Space Telescope Science Institute, Baltimore, MD, USA
Roeland van der Marel
Affiliation:
Space Telescope Science Institute, Baltimore, MD, USA
Holland Ford
Affiliation:
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Establishing or ruling out, either through solid mass measurements or upper limits, the presence of intermediate-mass black holes (IMBHs; with masses of 102 − 105 M) at the centers of star clusters would profoundly impact our understanding of problems ranging from the formation and long-term dynamical evolution of stellar systems, to the nature of the seeds and the growth mechanisms of supermassive black holes. While there are sound theoretical arguments both for and against their presence in today's clusters, observational studies have so far not yielded truly conclusive IMBH detections nor upper limits. We argue that the most promising approach to solving this issue is provided by the combination of measurements of the proper motions of stars at the centers of Galactic globular clusters and dynamical models able to take full advantage of this type of data set. We present a program based on HST observations and recently developed tools for dynamical analysis designed to do just that.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Anderson, J. & van der Marel, R. 2009, ApJ, submitted (arXiv:0905.0627)Google Scholar
Bahcall, J. N. & Wolf, R. A. 1976, ApJ, 209, 214CrossRefGoogle Scholar
Bahcall, J. N. & Wolf, R. A. 1977, ApJ, 216, 883CrossRefGoogle Scholar
Baker, J. G., Boggs, W. D., Centrella, J., Kelly, B. J., McWilliams, S. T., Miller, M. C., & van Meter, J. R. 2008, ApJ (Letters), 682, L29CrossRefGoogle Scholar
Baumgardt, H., Hut, P., Makino, J., McMillan, S., & Portegies Zwart, S. 2003a, ApJ (Letters), 582, L21CrossRefGoogle Scholar
Baumgardt, H., Makino, J., Hut, P., McMillan, S., & Portegies Zwart, S. 2003b, ApJ (Letters), 589, L25CrossRefGoogle Scholar
Baumgardt, H., Makino, J., & Ebisuzaki, T. 2004a, ApJ, 613, 1133CrossRefGoogle Scholar
Baumgardt, H., Makino, J., & Ebisuzaki, T. 2004b, ApJ, 613, 1143CrossRefGoogle Scholar
Baumgardt, H., Makino, J., & Hut, P. 2005, ApJ, 620, 238CrossRefGoogle Scholar
Binney, J. & Mamon, G. A. 1982, MNRAS, 200, 361CrossRefGoogle Scholar
Chanamé, J., Kleyna, J., & van der Marel, R. 2008, ApJ, 682, 841CrossRefGoogle Scholar
Dekel, A., Stoehr, F., Mamon, G. A., Cox, T. J., Novak, G. S., & Primack, J. R. 2005, Nature, 437, 707CrossRefGoogle Scholar
de Lorenzi, F., et al. 2009, MNRAS, 395, 76CrossRefGoogle Scholar
Gebhardt, K., Pryor, C., O'Connell, R. D., Williams, T. B., & Hesser, J. E. 2000, AJ, 119, 1268CrossRefGoogle Scholar
Gebhardt, K., Rich, R. M., & Ho, L. C. 2002, ApJ (Letters), 578, L41CrossRefGoogle Scholar
Gebhardt, K., Rich, R. M., & Ho, L. C. 2005, ApJ, 634, 1093CrossRefGoogle Scholar
Gerssen, J., van der Marel, R. P., Gebhardt, K., Guhathakurta, P., Peterson, R. C., & Pryor, C. 2002, AJ, 124, 3270CrossRefGoogle Scholar
Holley–Bockelmann, K., Gültekin, K., Shoemaker, D., & Yunes, N. 2008, ApJ, 686, 829CrossRefGoogle Scholar
Irwin, J. A., Brink, T., Bregman, J. N., & Roberts, T. P. 2009, ApJ (Letters), submitted (arXiv:0908.1115)Google Scholar
Kong, A. K. H. 2007, ApJ, 661, 875CrossRefGoogle Scholar
Kong, A. K. H., Heinke, C. O., Di Stefano, R., Barmby, P., Lewin, W. H. G., & Primini, F. A. 2009, ApJ (Letters), submitted (arXiv:0910.3944)Google Scholar
Maccarone, T. J., Kundu, A., Zepf, S. E., & Rhode, K. L. 2007, Nature, 445, 183CrossRefGoogle Scholar
Miocchi, P. 2007, MNRAS, 381, 103CrossRefGoogle Scholar
Moody, K. & Sigurdsson, S. 2009, ApJ, 690, 1370CrossRefGoogle Scholar
Noyola, E., Gebhardt, K., & Bergmann, M. 2008, ApJ, 676, 1008CrossRefGoogle Scholar
Romanowsky, A. J., Douglas, N. G., Arnaboldi, M., Kuijken, K., Merrifield, M. R., Napolitano, N. R., Capaccioli, M., & Freeman, K. C. 2003, Science, 301, 1696CrossRefGoogle Scholar
Trenti, M., Ardi, E., Mineshige, S., & Hut, P. 2007, MNRAS, 374, 857CrossRefGoogle Scholar
Ulvestad, J. S., Greene, J. E., & Ho, L. C. 2007, ApJ (Letters), 661, L151CrossRefGoogle Scholar
van der Marel, R. P. 2004, in: Ho, L. C. (ed.), Coevolution of Black Holes and Galaxies, Carnegie Obs. Astrophys. Ser., (Cambridge: Cambridge University Press), p. 37Google Scholar
van der Marel, R. P. & Anderson, J. 2009, ApJ, submitted (arXiv:0905.0638)Google Scholar
van de Ven, G., van den Bosch, R. C. E., Verolme, E. K., & de Zeeuw, P. T. 2006, A&A, 445, 513Google Scholar
Zepf, S. E., Maccarone, T. J., Bergond, G., Kundu, A., Rhode, K. L., & Salzer, J. J. 2007, ApJ (Letters), 669, L69CrossRefGoogle Scholar