Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T11:41:59.719Z Has data issue: false hasContentIssue false

First [NII] 122 μm line detection in a starburst pair at z = 4.7

Published online by Cambridge University Press:  10 June 2020

Minju M. Lee
Affiliation:
Max-Planck-Institut für Extraterrestrische Physik (MPE), Giessenbachstr., D-85748 Garching, Germnay Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan National Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo181-0015, Japan email: minju@mpe.mpg.de
Tohru Nagao
Affiliation:
Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama790-8577, Japan
Carlos De Breuck
Affiliation:
European Southern Observatory, Karl Schwarzschild Straß e 2, 85748Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report the first detection of [NII] 122 μm line toward a QSO-SMG pair, BRI 1202-0725, at z = 4.7 using ALMA. Combining with [NII] 205 μm line detection and taking the line ratio of [NII]122/[NII]205, we constrain electron densities of both galaxies. The derived electron densities are ${26_{ - 11}^{ + 12}$ and ${134_{ - 39}^{ + 50}$ cm−3 for the SMG and the QSO, respectively, which are the first measurements for galaxies at z > 4. The electron density of the SMG is comparable to the Galactic plane and the average of local spiral galaxies, while the value for the QSO is comparable to local starbursts and optical-line based measurements for star-forming galaxies at z ∼ 2–3. Considering the similar star-formation rates (SFRs) of ≍ 1000 M yr−1 for both galaxies, our results suggest a large scatter of electron densities at fixed SFR and caution against using optical lines for dusty starbursts. The details of this report are presented in Lee et al. 2019 (submitted).

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Beirão, P., Armus, L., Helou, G., et al. 2012, ApJ, 751, 14410.1088/0004-637X/751/2/144CrossRefGoogle Scholar
Bennett, C. L., Fixsen, D. J., Hinshaw, G., et al. 1994, ApJ, 434, 58710.1086/174761CrossRefGoogle Scholar
Daz-Santos, T., Armus, L., Charmandaris, V., et al. 2017, ApJ, 846, 3210.3847/1538-4357/aa81d7CrossRefGoogle Scholar
Goldsmith, P. F., Yldz, U. A., Langer, W. D., & Pineda, J. L. 2015, ApJ, 814, 13310.1088/0004-637X/814/2/133CrossRefGoogle Scholar
Herrera-Camus, R., Bolatto, A., Smith, J. D., et al. 2016, ApJ, 826, 17510.3847/0004-637X/826/2/175CrossRefGoogle Scholar
Iono, D., Yun, M. S., Elvis, M., et al. 2006, ApJL, 645, L9710.1086/506344CrossRefGoogle Scholar
Luridiana, V., Morisset, C., & Shaw, R. A. 2015, A&A, 573, A42Google Scholar
Omont, A., Petitjean, P., Guilloteau, S., et al. 1996, Nature, 382, 42810.1038/382428a0CrossRefGoogle Scholar
Pavesi, R., Riechers, D. A., Capak, P. L., et al. 2016, ApJ, 832, 15110.3847/0004-637X/832/2/151CrossRefGoogle Scholar
Petuchowski, S. J., Bennett, C. L., Haas, M. R., et al. 1994, ApJL, 427, L1710.1086/187354CrossRefGoogle Scholar
Sanders, R. L., Shapley, A. E., Kriek, M., et al. 2016, ApJ, 816, 2310.3847/0004-637X/816/1/23CrossRefGoogle Scholar
Yun, M. S., Carilli, C. L., Kawabe, R., et al. 2000, ApJ, 528, 17110.1086/308164CrossRefGoogle Scholar
Zhang, Z.-Y., Ivison, R. J., George, R. D., et al. 2018, MNRAS, 481, 5910.1093/mnras/sty2082CrossRefGoogle Scholar