Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T14:45:22.189Z Has data issue: false hasContentIssue false

Early planetary atmospheres and surfaces: Origin of the Earth’s water, crust and atmosphere

Published online by Cambridge University Press:  13 January 2020

Doris Breuer*
Affiliation:
German Aerospace Center (DLR), Institute of Planetary Research, Rutherfordstr. 2, 12489 Berlin, Germany, email: doris.breuer@dlr.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The origin of the planets atmosphere is a profound question of comparative planetology. There are two competing models, i.e. outgassing from the interior or late delivery from comets or volatiles-rich asteroids after most of the planet has been formed, of which the former is currently preferred. Meteorite compositions as well as radial mixing during accretion derived from accretion models suggest that the building blocks of the terrestrial planets contained some volatiles. Processes like dehydration by hydrous melting, oxidation, impact devolatilization, and in particular degassing during magma ocean solidification will then lead to a significant volatile loss of the interior and to the formation of a dense atmosphere during the early stages of planetary evolution. These processes are also responsible for the oxidation state of this early atmosphere, i.e. whether it was more reduced or oxidized. Although this early volatile loss was very efficient, the interior probably retained some water. This was distributed in the subsequent evolution between interior and atmosphere, as well as on the surface as liquid water in case of favorable temperature and pressure conditions. The main processes responsible for the water distribution are volcanic outgassing driven by partial melting of the silicate mantle and formation of the crust and recycling of water-rich crustal material. Here, an important difference between the terrestrial planets is the tectonic style prevailing on the planet. For the Earth with its plate tectonics, recycling of water is very efficient and can even balance the outgassing. For terrestrial planets in the stagnant lid regime of mantle convection such as Mars, the exchange of water between the interior and the surface/atmosphere is mainly in one direction and results in a continuous depletion of the interior. In this talk, I will briefly review our current knowledge on these interactions between interior and atmosphere and on the problem we are facing to better understand the influence of the interior on the habitability of a planet.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

References

Abe, Y. 1997, PEPI, 100, 27 Google Scholar
Abe, Y. & Matsui, T. 1986, J. Geophys. Res., 91, 291 CrossRefGoogle Scholar
Amari, S., Hoppe, P., Zinner, E., & Lewis, R.S. 1995, Meteoritics, 30, 490 10.1111/j.1945-5100.1995.tb01165.xCrossRefGoogle Scholar
Bertka, C. M. & Fei, Y. 1997, J. Geophys. Res.R, 102, 5251 CrossRefGoogle Scholar
Bolfan-Casanova, N. 2005, Mineralogical Magazine, 69, 229 10.1180/0026461056930248CrossRefGoogle Scholar
Brasser, R. 2013, Space Sci. Revs, 174, 11 CrossRefGoogle Scholar
Burnham, C. W. 1994, Rev. Mineral., 30, 123 Google Scholar
Daly, R. T., & Schultz, P. H. 2018, Sci. Advances, 4 Google Scholar
Dreibus, D. & Wänke, H. 1987, Icarus, 71, 225 CrossRefGoogle Scholar
Elkins-Tanton, L. T. 2008, Earth Planet. Sci. Lett., 271, 181 CrossRefGoogle Scholar
Elkins-Tanton, L.T., Parmentier, E.M., & Hess, P.C. 2003, J. Geophys. Res., 271, 181 Google Scholar
Gaillard, F., & Scaillet, B. 2014, Earth Planet. Sci. Lett., 403, 307 CrossRefGoogle Scholar
Genda, H., & Ikoma, M. 2008, Icarus, 194, 42 CrossRefGoogle Scholar
Green, D. H., Hibberson, W. O., Rosenthal, A., Kovcs, I., Yaxley, G. M., Falloon, T. J., & Brink, F. 2008, J. Petrology, 55, 2067 10.1093/petrology/egu050CrossRefGoogle Scholar
Hayashi, C., Nakazawa, K., & Mizuno, H. 1979, Earth Planet. Sci. Lett., 43, 22 10.1016/0012-821X(79)90152-3CrossRefGoogle Scholar
Hier-Majumder, S., & Hirschmann, M. M. 2014, Geochemistry, Geophysics, Geosystems, 18, 3078 10.1002/2017GC006937CrossRefGoogle Scholar
Hirschmann, M. M., & Withers, A. C. 2008, Earth Planet. Sci. Lett., 270, 147 CrossRefGoogle Scholar
Hirth, G., & Kohlstedt, D.L. 1995, Earth Planet. Sci. Lett., 144, 93 10.1016/0012-821X(96)00154-9CrossRefGoogle Scholar
Hirschmann, M. M. 2006, Annu. Rev. Earth Planet. Sci., 34, 629 CrossRefGoogle Scholar
Holloway, J. R. & Jakobsson, S. 1986, J. Geophys. Res., 91, 505 CrossRefGoogle Scholar
Karato, , & Wu, P. 1993, Science, 260, 771 CrossRefGoogle Scholar
Kasting, J.F., & Catling, D. 1993, Annu. Rev. Astron. Astrophys., 41, 429 CrossRefGoogle Scholar
Korenaga, J. 2013, Annu. Rev. Earth Planet. Sci., 41, 117 CrossRefGoogle Scholar
Korenaga, J., Planavsky, N. J., & Evans, D. A. 2017, Phil. Trans. R. Soc. A, 375, 20150393 CrossRefGoogle Scholar
Labrosse, S., Hernlund, J. W., & Coltice, N. 2007, Nature, 450, 866 CrossRefGoogle Scholar
Lammer, H., Chassefire, E., Karatekin, , Morschhauser, A., Niles, P. B., Mousis, O., Odert, P., Mstl, U. V., Breuer, D., Dehant, V., Grott, M., Grller, H., Hauber, E. & Binh San Pham, L 2012, Space Sci. Revs, 1744, 13 Google Scholar
Lebrun, T., Massol, H., Chassefire, E., Davaille, A., Marcq, E., Sarda, P., & Brandeis, G. 2013, J. Geophys. Res., 118, 1155 10.1002/jgre.20068CrossRefGoogle Scholar
Lunine, J. I., Chambers, J., Morbidelli, A., & Leshin, L. A. 2003, Icarus, 165, 1 CrossRefGoogle Scholar
Mdard, E., & Grove, T. L. 2006, J. Geophys. Res., 111 CrossRefGoogle Scholar
Mei, S. & Kohlstedt, D.L. 2000, J. Geophys. Res., 105, 21457 CrossRefGoogle Scholar
Morbidelli, A., Chambers, J., Lunine, J. I., Petit, J. M., Robert, F., Valsecchi, G. B., & Cyr, K. E. 2000, MAPS, 35, 1309 Google Scholar
Morschhauser, A., Grott, M., & Breuer, D. 2000, Icarus, 212, 541 CrossRefGoogle Scholar
Raymond, S. N., Quinn, T., & Lunine, J. I. 2006, Icarus, 183, 265 CrossRefGoogle Scholar
Rubie, D. C., Jacobson, S. A., Morbidelli, A., OBrien, D. P., Young, E. D., de Vries, J., & Frost, D. J. 2014, Icarus, 248, 89 CrossRefGoogle Scholar
Senshu, H., Kuramoto, K., & Matsui, T. 2002, J. Geophys. Res., 107, 1 10.1029/2001JE001819CrossRefGoogle Scholar
Solomatov, V. S. 2000, Origin of the Earth and Moon, 1, 323 Google Scholar
Tian, F., Kasting, J. F., & Solomon, S. C. 2009, Geophys. Res. Lett., 36 CrossRefGoogle Scholar
Tyburczy, J. A., Xu, X., Ahrens, T. J., & Epstein, S. 2009, Earth Planet. Sci. Lett., 192, 23 CrossRefGoogle Scholar
Valley, J. W., Lackey, J. S., Cavosie, A. J., Clechenko, C. C., Spicuzza, M. J., Basei, M. A. S., & Peck, W. H. 2009, Contributions to Mineralogy and Petrology, 150, 561 CrossRefGoogle Scholar