Published online by Cambridge University Press: 27 November 2018
Coronal mass ejections (CMEs) have become one of the key indicators of solar activity, especially in terms of the consequences of the transient events in the heliosphere. Although CMEs are closely related to the sunspot number (SSN), they are also related to other closed magnetic regions on the Sun such as quiescent filament regions. This makes CMEs a better indicator of solar activity. While sunspots mainly represent the toroidal component of solar magnetism, quiescent filaments (and hence CMEs associated with them) connect the toroidal and poloidal components via the rush-to-the-pole (RTTP) phenomenon. Taking the end of RTTP in each hemisphere as an indicator of solar polarity reversal, it is shown that the north-south reversal asymmetry has a quasi-periodicity of 3-5 solar cycles. Focusing on the geospace consequences of CMEs, it is shown that the maximum CME speeds averaged over Carrington rotation period show good correlation with geomagnetic activity indices such as Dst and aa.