Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T21:57:40.367Z Has data issue: false hasContentIssue false

Common envelope evolution of massive stars

Published online by Cambridge University Press:  30 December 2019

Paul M. Ricker
Affiliation:
Department of Astronomy, University of Illinois, 1002 W. Green St., Urbana, IL 61801 USA emails: pmricker@illinois.edu, rwebbink@illinois.edu
Frank X. Timmes
Affiliation:
School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 USA email: Francis.Timmes@asu.edu
Ronald E. Taam
Affiliation:
Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA email: r-taam@northwestern.edu
Ronald F. Webbink
Affiliation:
Department of Astronomy, University of Illinois, 1002 W. Green St., Urbana, IL 61801 USA emails: pmricker@illinois.edu, rwebbink@illinois.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The discovery via gravitational waves of binary black hole systems with total masses greater than 60Mʘ has raised interesting questions for stellar evolution theory. Among the most promising formation channels for these systems is one involving a common envelope binary containing a low metallicity, core helium burning star with mass ⁓30 – 40Mʘ and a black hole with mass ⁓30 – 40Mʘ. For this channel to be viable, the common envelope binary must eject more than half the giant star’s mass and reduce its orbital separation by as much as a factor of 80. We discuss issues faced in numerically simulating the common envelope evolution of such systems and present a 3D AMR simulation of the dynamical inspiral of a low-metallicity red supergiant with a massive black hole companion.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Abbott, B. P., et al. 2016, Phys. Rev. Lett., 116, 061102 CrossRefGoogle Scholar
Abbott, B. P., et al. 2017a, Phys. Rev. Lett., 118, 221101 CrossRefGoogle Scholar
Abbott, B. P., et al. 2017b, Phys. Rev. Lett., 119, 141101 CrossRefGoogle ScholarPubMed
Belczynski, K., et al. 2010, ApJ, 714, 1217 CrossRefGoogle Scholar
Belczynski, K., et al. 2016, Nature, 534, 512 CrossRefGoogle Scholar
Colella, P., & Woodward, P. R. 1984, J. Comp. Phys., 54, 174 CrossRefGoogle Scholar
Chamandy, L., et al. 2018, MNRAS, 480, 1898 CrossRefGoogle Scholar
Dubey, A., Reid, L. B., & Fisher, R. 2008, Phys. Scr., T132, 014046 CrossRefGoogle Scholar
Faber, J. A., & Rasio, F. A. 2000, Phys. Rev. D, 62, 064012 CrossRefGoogle Scholar
Ferguson, J. W., et al. 2005, ApJ, 623, 585 CrossRefGoogle Scholar
Fryxell, B., et al. 2000, ApJS, 131, 273 CrossRefGoogle Scholar
Iaconi, R., et al. 2017, MNRAS, 464, 4028 CrossRefGoogle Scholar
Iglesias, C. A., & Rogers, F. J. 1996, ApJ, 464, 943 CrossRefGoogle Scholar
Ivanova, N., et al. 2013, A&AR, 21, 59 Google ScholarPubMed
Ivanova, N. 2018, ApJ, 858, L24 CrossRefGoogle Scholar
Jiang, Y.-F., et al. 2018, Nature, 561, 498 CrossRefGoogle Scholar
Kruckow, M. U., et al. 2016, A&A, 596, 58 Google Scholar
Levermore, C. D., & Pomraning, G. C. 1981, ApJ, 248, 321 CrossRefGoogle Scholar
Lipunov, V. M., Postnov, K. A., & Prokhorov, M. E. 1997, MNRAS, 288, 245 CrossRefGoogle Scholar
Löhner, R. 1987, Comp. Meth. Appl. Mech. Eng., 61, 323 CrossRefGoogle Scholar
López-Cámara, D., De Colle, F., & Moreno Méndez, E. 2018, MNRAS, accepted (arXiv:1806.11115)Google Scholar
MacNeice, P., et al. 2000, Comp. Phys. Comm., 126, 330 CrossRefGoogle Scholar
Murguia-Berthier, A., et al. 2017, ApJ, 845, 173 CrossRefGoogle Scholar
Nandez, J. L. A., Ivanova, N., & Lombardi, J. C. 2015, MNRAS, 450, L39 CrossRefGoogle Scholar
Ohlmann, S. T., et al. 2016, ApJ, 816, L9 CrossRefGoogle Scholar
Ohlmann, S. T., et al. 2017, A&A, 599, A5 Google Scholar
Passy, J.-C., et al. 2012, ApJ, 744, 52 CrossRefGoogle Scholar
Paxton, B., et al. 2011, ApJS, 192, 3 CrossRefGoogle Scholar
Paxton, B., et al. 2013, ApJS, 208, 4 CrossRefGoogle Scholar
Paxton, B., et al. 2015, ApJS, 220, 15 CrossRefGoogle Scholar
Paxton, B., et al. 2018, ApJS, 234, 34 CrossRefGoogle Scholar
Rasio, F. A., & Shapiro, S. L. 1992, ApJ, 401, 226 CrossRefGoogle Scholar
Ricker, P. M. 2008, ApJS, 176, 293 CrossRefGoogle Scholar
Ricker, P. M., & Taam, R. E. 2008, ApJ, 672, L41 CrossRefGoogle Scholar
Ricker, P. M., & Taam, R. E. 2012, ApJ, 746, 74 CrossRefGoogle Scholar
Soker, N. 2004, New Ast., 9, 399 CrossRefGoogle Scholar
Soker, N. 2017, MNRAS, 471, 4839 CrossRefGoogle Scholar
Soker, N., Grichener, A., & Sabach, E. 2018, ApJ, 863, L14 CrossRefGoogle Scholar
Tutukov, A. V., & Cherepashchuk, A. M. 2017, Astron. Rep., 61, 833 CrossRefGoogle Scholar
Tutukov, A., & Yungelson, L. 1973, Nauch. Inform., 27, 70 Google Scholar
van den Heuvel, E. P. J., & De Loore, C. 1973, A&A, 25, 387 Google Scholar
Webbink, R. F. 2008, in: Milone, E. F., Leahy, D. A., & Hobill, D. W. (eds.), Short-Period Binary Stars: Observations, Analyses, and Results (Springer: Berlin), p. 233 Google Scholar
Whitehouse, S. C., Bate, M. R., & Monaghan, J. J. 2005, MNRAS, 364, 1367 CrossRefGoogle Scholar