Published online by Cambridge University Press: 20 January 2009
A congruence relation θ on an algebra L is principal if there exist a, b)∈L such that θ is the smallest congruence relation for which (a, b)∈θ. The property that, for every algebra in a variety, the intersection of two principal congruences is again a principal congruence is one that is known to be shared by many varieties (see, for example, K. A. Baker [1]). One such example is the variety of Boolean algebras. De Morgan algebras are a generalization of Boolean algebras and it is the intersection of principal congruences in the variety of de Morgan algebras that is to be considered in this note.