Published online by Cambridge University Press: 20 January 2009
Suppose F is an additively written free group of countably infinite rank with basis T and let E = End(F). If we add endomorphisms pointwise on T and multiply them by map composition, E becomes a near-ring. In her paper “On Varieties of Groups and their Associated Near Rings” Hanna Neumann studied the sub-near-ring of E consisting of the endomorphisms of F of finite support, that is, those endomorphisms taking almost all of the elements of T to zero. She called this near-ring Φω. Now it happens that the ideals of Φω are in one to one correspondence with varieties of groups. Moreover this correspondence is a monoid isomorphism where the ideals of φω are multiplied pointwise. The aim of Neumann's paper was to use this isomorphism to show that any variety can be written uniquely as a finite product of primes, and it was in this near-ring theoretic context that this problem was first raised. She succeeded in showing that the left cancellation law holds for varieties (namely, U(V) = U′(V) implies U = U′) and that any variety can be written as a finite product of primes. The other cancellation law proved intractable. Later, unique prime factorization of varieties was proved by Neumann, Neumann and Neumann, in (7). A concise proof using these same wreath product techniques was also given in H. Neumann's book (6). These proofs, however, bear no relation to the original near-ring theoretic statement of the problem.