Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T17:09:25.477Z Has data issue: false hasContentIssue false

Neuropeptide F: a novel parasitic flatworm regulatory peptide from Moniezia expansa (Cestoda: Cyclophyllidea)

Published online by Cambridge University Press:  06 April 2009

A. G. Maule
Affiliation:
Comparative Neuroendocrinology Research Group, Schools of Biology and Biochemistry, The Queen's University of Belfast, Belfast BT7 1NN, UK
C. Shaw
Affiliation:
Comparative Neuroendocrinology Research Group, Schools of Clinical Medicine, The Queen's University of Belfast, Belfast BT7 1NN, UK
D. W. Halton
Affiliation:
Comparative Neuroendocrinology Research Group, Schools of Biology and Biochemistry, The Queen's University of Belfast, Belfast BT7 1NN, UK
L. Thim
Affiliation:
Novo Nordisk A/S, Bagsvaerd, Denmark
C. F. Johnston
Affiliation:
Comparative Neuroendocrinology Research Group, Schools of Clinical Medicine, The Queen's University of Belfast, Belfast BT7 1NN, UK
I. Fairweather
Affiliation:
Comparative Neuroendocrinology Research Group, Schools of Biology and Biochemistry, The Queen's University of Belfast, Belfast BT7 1NN, UK
K. D. Buchanan
Affiliation:
Comparative Neuroendocrinology Research Group, Schools of Clinical Medicine, The Queen's University of Belfast, Belfast BT7 1NN, UK

Summary

Using a C-terminally directed pancreatic polypeptide (PP) antiserum and immunocytochemical methods, PP-immuno-reactivity (IR) was localized throughout the central (CNS) and peripheral nervous systems (PNS) of the cestode, Moniezia expansa. In the CNS, immunostaining was evident in the paired cerebral ganglia (primitive brain), connecting commissure, and the paired longitudinal nerve cords that are cross-linked by numerous regular transverse connectives. The PNS was seen to consist of a fine anastomosing nerve-net of immunoreactive fibres, many of which were closely associated with reproductive structures. Radioimmunoassay of this peptide IR in acid-alcohol extracts of the worm measured 192·8 ng/g of PP–IR. HPLC analyses of the M. expansa PP–IR identified a single molecular form which was purified to homogeneity. Plasma desorption mass spectrometry (PDMS) of purified parasite peptide resolved a single peptide with a molecular mass of 4599±10 Da. Automated gas-phase Edman degradation identified a 39-amino acid peptide with a C-terminal phenyl-alaninamide. Examination of its primary structure shows that it displays significant sequence homology with the vertebrate neuropeptide Y superfamily, suggesting that this platyhelminth-derived peptide is the phylogenetic precursor. Neuropeptide F (M. expansa) is the first regulatory peptide to be fully sequenced from the phylum Platyhelminthes and may represent a member of an important new class of invertebrate neuropeptide.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balasubramanian, A., Andrews, P. C., Renugopalakrishnan, V. & Rigel, D. F. (1989). Glycine-extended anglerfish peptide YG (aPY) a neuropeptide Y (NPY) homologue may be a precursor of a biologically active peptide. Peptides 10, 581–5.CrossRefGoogle Scholar
Ballesta, J., Bloom, S. R. & Polak, J. M. (1985). Distribution and localization of regulatory peptides. CRC Critical Reviews in Clinical and Laboratory Science 22, 185218.CrossRefGoogle ScholarPubMed
Barnes, R. S. K., Calow, P. & Olive, P. J. W. (1988). The Invertebrates: A New Synthesis. Oxford: Blackwell Scientific Publications.Google Scholar
Conlon, J. M., Schmidt, W. E., Gallwitz, B., Falkmer, S. & Thim, L. (1986). Characterisation of an amidated form of pancreatic polypeptide from the daddy sculpin (Cottus scorpius). Regulatory Peptides 16, 261–8.CrossRefGoogle ScholarPubMed
Cottrell, G. A. (1989). The biology of the FMRFamide-series of peptides in molluscs with special reference to Helix. Comparative Biochemistry and Physiology 93A, 41–5.CrossRefGoogle ScholarPubMed
De Loof, A. & Schoofs, L. (1990). Homologies between the amino acid sequences of some vertebrate peptide hormones and peptides isolated from invertebrate sources. Comparative Biochemistry and Physiology 95B, 459–68.Google ScholarPubMed
Dockray, G. J., Vaillant, C. & Williams, R. G. (1981). New vertebrate brain-gut peptide related to a molluscan neuropeptide and an opioid peptide. Nature, London 293, 656–7.CrossRefGoogle Scholar
Dockray, G. J. & Williams, R. G. (1983). FMRFamide-like immunoreactivity in rat brain: Development of a radioimmunoassay and its application in studies of distribution and chromatographic properties. Brain Research 266, 295303.CrossRefGoogle ScholarPubMed
Fairweather, I. & Halton, D. W. (1991). Neuropeptides in platyhelminths. Parasitology 102, (Suppl.) S77–S92.CrossRefGoogle ScholarPubMed
Fairweather, I., Macartney, G. A., Johnston, C. F., Halton, D. W. & Buchanan, K. D. (1988). Immunocytochemical demonstration of 5-hydroxytryptamine (serotonin) and vertebrate neuropeptides in the nervous system of excysted cysticercoid larvae of the rat tapeworm, Hymenolepis diminuta (Cestoda, Cyclophyllidea). Parasitology Research 74, 371–9).CrossRefGoogle ScholarPubMed
Fairweather, I., Mahendrasingam, S., Johnston, C. F., Halton, D. W. & Shaw, C. (1990). Peptidergic nerve elements in three developmental stages of the tetraphyllidean tapeworm, Trilocularia acanthiaevulgaris: an immunocytochemical study. Parasitology Research 76, 497508.CrossRefGoogle ScholarPubMed
Grimmelikhuijzen, C. J. P. (1986). FMRFamide-like peptides in the primitive nervous systems of coelenterates and complex nervous systems of higher animals. In Handbook of Comparative Opioid and Related Neuropeptide Mechanisms, vol. 1 (ed. Stefano, G. B.), pp. 103–15. Boca Raton, Florida: CRC Press.Google Scholar
Halton, D. W., Fairweather, I., Shaw, C. & Johnston, C. F. (1990). Regulatory peptides in parasitic platyhelminths. Parasitology Today 6, 284–90.CrossRefGoogle ScholarPubMed
Hazelwood, R. L. (1990). Pancreatic polypeptide (PP) and its relevant relatives. In Progress in Comparative Endocrinology (ed. Eppel, A., Scanes, C. G. & Stetson, M. H.), pp. 250–6. New York, Chichester, Brisbane, Toronto, Singapore: Wiley-Liss, Inc.Google Scholar
Kimmel, J. R., Plisetskaya, E. M., Pollock, H. G., Hamilton, J. W., Rouse, J. B., Ebner, K. E. & Rawitch, A. B. (1986). Structure of a peptide from coho salmon endocrine pancreas with homology to neuropeptide Y. Biochemical and Biophysical Research Communications 141, 1084–91.CrossRefGoogle ScholarPubMed
Magee, R. M., Fairweather, I., Johnston, C. F., Halton, D. W. & Shaw, C. (1989). Immunocytochemical demonstration of neuropeptides in the nervous system of the liver fluke, Fasciola hepatica (Trematoda, Digenea). Parasitology 98, 227–38.CrossRefGoogle ScholarPubMed
Magee, R. M., Fairweather, I., Shaw, C., McKillop, J. M., Montgomery, W. I., Johnston, C. F. & Halton, D. W. (1991). Quantification and partial characterisation of regulatory peptides in the liver fluke, Fasciola hepatica (Trematoda, Digenea). Comparative Biochemistry and Physiology (in the Press).Google Scholar
Maule, A. G., Halton, D. W., Johnston, C. F., Shaw, C. & Fairweather, I. (1990 a). The serotoninergic, cholinergic and peptidergic components of the nervous system in the monogenean parasite, Diclidophora merlangi: a cytochemical study. Parasitology 100, 255–73.CrossRefGoogle ScholarPubMed
Maule, A. G., Halton, D. W., Johnston, C. F., Shaw, C. & Fairweather, I. (1990 b). A cytochemical study of the serotoninergic, cholinergic and peptidergic components of the reproductive system in the monogenean parasite, Diclidophora merlangi. Parasitology Research 76, 409–19.CrossRefGoogle ScholarPubMed
Maule, A. G., Shaw, C., Halton, D. W., Johnston, C. F., Fairweather, I. & Buchanan, K. D. (1989 a). Tachykinin immunoreactivity in the parasitic flatworm Diclidophora merlangi and its fish host the whiting (Merlangius merlangus): radioimmunoassay and chromatographic characterization using region-specific substance P and neurokinin A antisera. Comparative Biochemistry and Physiology 94C, 533–41.Google ScholarPubMed
Maule, A. G., Shaw, C., Halton, D. W., Johnston, C. F. & Fairweather, I. (1989 b). Localization, quantification and characterisation of pancreatic polypeptide immunoreactivity in the parasitic flatworm Diclidophora merlangi and its fish host (Merlangius merlangus). General and Comparative Endocrinology 74, 50–6.CrossRefGoogle ScholarPubMed
McDonald, J. K. (1988). NPY and related substances. CRC Critical Reviews in Neurobiology 4, 97135.Google ScholarPubMed
McKay, D. M., Halton, D. W., Johnston, C. F., Fairweather, I. & Shaw, C. (1990 a). Occurrence and distribution of putative neurotransmitters in the frog-lung parasite Haplometra cylindracea (Trematoda: Digenea). Parasitology Research 76, 509–17.CrossRefGoogle ScholarPubMed
McKay, D. M., Halton, D. W., Johnston, C. F., Fairweather, I. & Shaw, C. (1991). Cytochemical demonstration of cholinergic, serotoninergic and peptidergic nerve elements in Gorgoderina vitelliloba (Trematode: Digenea). International Journal for Parasitology (in the Press).CrossRefGoogle ScholarPubMed
McKay, D. M., Shaw, C., Halton, D. W., Johnston, C. F., Fairweather, I. & Buchanan, K. D. (1990 b). Mammalian regulatory peptide immunoreactivity in the trematode parasite Haplometra cylindracea and the lung of its frog host, Rana temporaria: comparative chromatographic characterisation using reverse-phase high-performance liquid chromatography. Comparative Biochemistry and Physiology 96C, 345–51.Google ScholarPubMed
McKay, D. M., Shaw, C., Thim, L., Johnston, C. F., Halton, D. W., Fairweather, I. & Buchanan, K. D. (1990 c). The complete primary structure of pancreatic polypeptide from the European common frog, Rana temporaria. Regulatory Peptides 31, 187–98.CrossRefGoogle ScholarPubMed
Platt, N. & Reynolds, S. E. (1988). Invertebrate Neuropeptides. In Comparative Invertebrate Neurochemistry (ed. Lunt, G. G. & Olsen, R. W.), pp. 175226. Beckenham: Croom Helm Ltd.CrossRefGoogle Scholar
Price, D. A. & Greenberg, M. J. (1977). Structure of a molluscan cardioexcitatory neuropeptide. Science 197, 670–1.CrossRefGoogle ScholarPubMed
Shaw, C. & Johnston, C. F. (1991). The role of regulatory peptides in parasitic platyhelminths and their vertebrate hosts: possible novel factors in host–parasite interactions. Parasitology 102 (Suppl.), S000–S000.CrossRefGoogle ScholarPubMed
Skuce, P. J., Johnston, C. F., Fairweather, I., Halton, D. W., Shaw, C. & Buchanan, K. D. (1990 a). Immunoreactivity to the pancreatic polypeptide family in the nervous system of the adult human blood fluke, Schistosoma mansoni. Cell and Tissue Research 261, 573–81.CrossRefGoogle Scholar
Skuce, P. J., Johnston, C. F., Fairweather, I., Halton, D. W. & Shaw, C. (1990 b). A confocal scanning laser microscope study of the peptidergic and serotoninergic components of the nervous system in larval Schistosoma mansoni. Parasitology 101, 227–34.CrossRefGoogle ScholarPubMed
Tatemoto, K., Carlquist, M. & Mutt, V. (1982). Neuropeptide Y–A novel brain peptide with structural similarities to peptide tyrosine tyrosine and pancreatic polypeptide. Nature, London 296, 659–60.CrossRefGoogle Scholar
Veenstra, J. A. & Schooneveld, H. (1984). Immunocytochemical localization of neurons in the nervous system of the Colorado potato beetle with antisera against FMRFamide and bovine pancreatic polypeptide. Cell and Tissue Research 235, 303–8.CrossRefGoogle ScholarPubMed
Verhaert, P., Grimmelikhuijzen, C. J. P. & De Loof, A. (1985). Distinct localization of FMRFamide- and bovine pancreatic polypeptide-like material in the brain reterocerebral complex and suboesophageal ganglion of the cockroach Periplaneta americana L. Brain Research 348, 331–8.CrossRefGoogle ScholarPubMed