Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T09:54:01.120Z Has data issue: false hasContentIssue false

Aerobic to anaerobic transition in the carbohydrate metabolism of Schistosoma mansoni cercariae during transformation in vitro

Published online by Cambridge University Press:  06 April 2009

B. E. P. Van Oordt
Affiliation:
Laboratory of Veterinary Biochemistry, Utrecht University, P.O. Box 80.176, 3508 TD Utrecht, The Netherlands
A. G. M. Tielens
Affiliation:
Laboratory of Veterinary Biochemistry, Utrecht University, P.O. Box 80.176, 3508 TD Utrecht, The Netherlands
S. G. Van Den Bergh
Affiliation:
Laboratory of Veterinary Biochemistry, Utrecht University, P.O. Box 80.176, 3508 TD Utrecht, The Netherlands

Summary

Schistosoma mansoni cercariae in water were shown to possess a largely aerobic energy metabolism, the Krebs cycle being the main terminal of carbohydrate breakdown. A metabolic transition towards a more anaerobic breakdown of carbo-hydrate could be achieved by incubation conditions which also stimulated biological transformation. Incubation of cercariae in a simple salt medium containing 5 mM glucose induced such a metabolic transition: beside carbon dioxide large amounts of lactate and pyruvate were excreted. The results indicate that the production of pyruvate was coupled to electron transfer in the respiratory chain. Some aspects of this unusual pyruvate production are discussed. The observed change in the end-product pattern of carbohydrate breakdown is very rapid: most of the switch occurred within 2 h. Our results show that the metabolic transition was triggered by the biological transformation itself, or by the same event that induces the biological transformation. The metabolic and the biological changes proceeded synchronously.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bergmeyer, H. U., Bernt, E., Schmidt, F. & Stork, H. (1970). D-glucose. Bestimmung mit Hexokinase und Glucose-6-phosphat-Dehydrogenase. In Methoden der Enzymatischen Analyse (ed. Bergmeyer, H. U.), pp. 1163–5. Verlag Chemie: Weinheim/Bergstr.Google Scholar
Bruce, J. I., Ruff, M. D. & Hasegawa, H. (1971). Schistosoma mansoni: endogenous and exogenous glucose and respiration of cercariae. Experimental Parasitology 29, 8693.CrossRefGoogle ScholarPubMed
Bruce, J. I., Weiss, E., Stirewalt, M. A. & Lincicome, D. R. (1969). Schistosoma mansoni: glycogen content and utilization of glucose, pyruvate, glutamate, and citric acid cycle intermediates by cercariae and schistosomules. Experimental Parasitology 26, 2940.CrossRefGoogle ScholarPubMed
Clegg, J. A. & Smithers, S. R. (1972). The effect of immune rhesus monkey serum on Schistosomula of Schistosoma mansoni during cultivation in vitro. International Journal for Parasitology 2, 7998.CrossRefGoogle ScholarPubMed
Coles, G. C. (1972). Carbohydrate metabolism of larval Schistosoma mansoni. International Journal for Parasitology 2, 341–52.CrossRefGoogle ScholarPubMed
Coles, G. C. (1984). Recent advances in schistosome biochemistry. Parasitology 89, 603–37.CrossRefGoogle ScholarPubMed
Cousin, C. E., Stirewalt, M. A., Dorsey, C. H. & Watson, L. P. (1986 a). Schistosoma mansoni: comparative development of schistosomules produced by artificial techniques. Journal of Parasitology 72, 606–9.CrossRefGoogle ScholarPubMed
Cousin, C. E., Stirewalt, M. A. & Dorsey, C. H. (1986 b). Schistosoma mansoni: transformation of cercariae to schistosomules in ELAC, saline and phosphate-buffered saline. Journal of Parasitology 72, 609–11.CrossRefGoogle ScholarPubMed
Pande, S. V. (1976). Liquid scintillation counting of aqueous samples using Triton-containing scintillants. Analytical Biochemistry 74, 2534.CrossRefGoogle ScholarPubMed
Ramalho-Pinto, F. J., Gazzinelli, G., Howells, R. E., Mota-Santos, T. A., Figueiredo, E. A. & Pellegrino, J.(1974). Schistosoma mansoni: defined system for stepwise transformation of cercaria to schistosomule in vitro. Experimental Parasitology 36, 360–72.CrossRefGoogle ScholarPubMed
Ramalho-Pinto, F. J., Gazzinelli, G., Howells, R. E. & Pellegrino, J. (1975). Factors affecting surface changes in intact cercariae and cercarial bodies of Schistosoma mansoni. Parasitology 71, 1925.CrossRefGoogle ScholarPubMed
Stirewalt, M. A. (1974). Schistosoma mansoni: cercaria to schistosomule. Advances in Parasitology 12, 115–82.CrossRefGoogle ScholarPubMed
Stirewalt, M. A., Cousin, C. E. & Dorsey, C. H. (1983). Schistosoma mansoni: stimulus and transformation of cercariae into schistosomules. Experimental Parasitology 56, 358–68.CrossRefGoogle ScholarPubMed
Thompson, D. P., Morrison, D. D., Pax, R. A. & Bennett, J. L. (1984). Changes in glucose metabolism and cyanide sensitivity in Schistosoma mansoni during development. Molecular and Biochemical Parasitology 13, 3951.CrossRefGoogle ScholarPubMed
Tielens, A. G. M. & Van Den Berg, S. G. (1987). Glycogenmetabolism in Schistosoma mansoni worms after their isolation from the host. Molecular and Biochemical Parasitology 24, 247–54.CrossRefGoogle Scholar
Tielens, A. G. M., Van Den Heuvel, J. M. & Van Den Bergh, S. G. (1984). The energy metabolism of Fasciola hepatica during its development in the final host. Molecular and Biochemical Parasitology 13, 301–7.CrossRefGoogle ScholarPubMed
Tielens, A. G. M., Van Der Meer, P. & Van Den Bergh, S. G.(1981). The aerobic energy metabolism of the juvenile Fasciola hepatica. Molecular and Biochemical Parasitology 3, 205–14.CrossRefGoogle ScholarPubMed
Von Kruger, W. M. A., Gazzinelli, G., Figueiredo, E. A. & Pellegrino, J. (1978). Oxygen uptake and lactate production by Schistosoma mansoni cercaria, cercarial body and tail, and schistosomule. Comparative Biochemistry and Physiology 60B, 41–6.Google ScholarPubMed