Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T10:05:15.292Z Has data issue: false hasContentIssue false

Vasoactive intestinal polypeptide-like and peptide histidine isoleucine-like proteins excreted/secreted by Nippostrongylus brasiliensis, Nematodirus battus and Ascaridia galli

Published online by Cambridge University Press:  06 April 2009

N. Foster*
Affiliation:
Gastrointestinal Drug Delivery Research Centre, Department of Physiological Sciences, The Medical School, Neivcastle upon Tyne NE2 4HH
D. L. Lee
Affiliation:
Department of Pure and Applied Biology, University of Leeds, Leeds LS2 9JT
*
* Corresponding author. Tel: 0191 2227772. Fax: 0191 2226706. E-mail: N.Foster@ncl.AC.UK.

Summary

Vasoactive intestinal polypeptide (VIP)-Hke protein was detected by dot blot analysis in the excretions/secretions (E/S) of Nematodirus battus and Ascaridia galli and was confirmed in the E/S of Nippostrongylus brasiliensis. ELISA analysis showed that N. brasiliensis E/S contained the highest proportion of VIP-like protein (28·04 pmoles/mg of total E/S protein) and A. galli E/S contained the lowest (10·89 pmoles/mg of total E/S protein). Peptide histidine isoleucine (PHI)- like protein was detected by dot blot analysis in the E/S products of N. brasiliensis, N. battus and A. galli. ELISA analysis suggested that A. galli E/S contained the highest proportion of PHI (20·77 nmoles/mg of total E/S protein) and N. battus E/S contained the lowest (0·67 nmoles/mg of total E/S protein). The possible significance of VIP-like and PHI-like substances in the E/S of gastrointestinal nematodes is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahren, B. & Falck, B. (1991). Effects of helodermin and VIP on insulin and glucagon secretion in the mouse. Regulatory Peptides 32, 19.CrossRefGoogle ScholarPubMed
Ahren, B. & Lundquist, I. (1988). Effects of PHI on basal and stimulated insulin and glucagon secretion in the mouse. Neuropeptides 11, 159162.CrossRefGoogle ScholarPubMed
Anagnostides, A. A., Christofides, N. D., Bloom, S. R. & Chadwick, V. S. (1983). Peptide histidine isoleucine inhibits biliary but not pancreatic secretions in man. Clinical Sciences 65, 40.Google Scholar
Bitar, K. N. & Maghlouf, G. M. (1982). Relaxation of isolated gastric smooth muscle cells by vasoactive intestinal peptide. Science 216, 531533.CrossRefGoogle ScholarPubMed
Bonjoua, Y., Vandermeers, A., Robberecht, P., Vandermeers-Pireth, M. & Christophe, J. (1991). Purification and amino acid sequence of vasoactive intestinal peptide, peptide histidine isoleucine and secretion from ovine small intestine. Regulatory Peptides 32, 169179.CrossRefGoogle Scholar
Brennan, L. J., McLoughlin, T. A., Mutt, V., Tatemoto, K. & Wood, J. R. (1982). Effects of PHI, a newly isolated peptide, on gallbladder function in the guinea pig. Journal of Physiology 329, 7172.Google Scholar
Christofides, N. D., Yiangou, Y., Piper, P. J., Ghatei, M. A., Tatemoto, K., Polak, J. M. & Bloom, S. R. (1982). Distribution of PHI in the mammalian respiratory tract and some aspects of its pharmacology. Regulatory Peptides 4, 359.CrossRefGoogle Scholar
Christofides, N. D., Polak, J. M. & Bloom, S. R. (1984). Studies on the distribution of PHI in mammals. Peptides 5, 261266.CrossRefGoogle ScholarPubMed
Foster, N., Deane, E. J. & Lee, D. L. (1994). The effects of homogenates and excretory/secretory products of Nippostrongylus brasiliensis and of acetylcholinesterase on the amplitude and frequency of contraction of uninfected rat intestine in vitro. Parasitology 108, 453459.CrossRefGoogle ScholarPubMed
Foster, N. & Lee, D. L. (1996). A vasoactive intestinal polypeptide-like protein excreted/secreted by Nippostrongylus brasiliensis and its effect on contraction of uninfected rat intestine. Parasitology 112, 97104.CrossRefGoogle ScholarPubMed
Gregory, P. C., Wenham, G., Poppi, D., Coop, R. L., MacRae, J. C. & Miller, S. J. (1985). The influence of a chronic subclinical infection of Trichostrongylus colubriformis on gastrointestinal motility and digesta flow in sheep. Parasitology 91, 381396.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680685.CrossRefGoogle ScholarPubMed
Lee, D. L. (1970). The fine structure of the excretory system in adult Nippostrongylus brasiliensis (Nematoda) and a suggested function for the ‘excretory glands’. Tissue and Cell 2, 225231.CrossRefGoogle Scholar
Nishizawa, M., Hayakawa, Y., Yanaihara, N. & Okamoto, H. (1985). Nucleotide sequence divergence and functional constraint in VIP mRNA evolution between human and rat. FEBS Letters 183, 5559.CrossRefGoogle ScholarPubMed
Ogilvie, B. M. & Jones, V. E. (1971). Nippostrongylus brasiliensis: a review of immunity and the hostparasite relationship in the rat. Experimental Parasitology 29, 138177.CrossRefGoogle ScholarPubMed
Ouchterlony, O. & Nilsson, L. A. (1978). Immunodiffusion and immunoelectrophoresis. In Handbook of Experimental Immunology, (ed. Weir, D. M.), Chapter 19. Blackwell Scientific Publications, Oxford.Google Scholar
Savin, K. S., Dopheide, A. A., Frenkel, M. J., Wagland, B. M., Warwick, N. G. & Ward, C. W. (1990). Characterization, cloning and host-protective activity of a 30-Kilodalton glycoprotein secreted by the parasitic stages of Trichostrongylus coliibriformis. Molecular and Biochemical Parasitology 41, 167176.CrossRefGoogle Scholar
Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olsen, B. J. & Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry 150, 7685.CrossRefGoogle ScholarPubMed
Towbin, H., Staehelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 4350043504.CrossRefGoogle ScholarPubMed
Voller, A. (1980). Heterogeneous enzyme-immunoassays and their applications. In Enzyme-Assays, (ed. Maggio, E. T.), pp. 181196. Boca Raton: CRC Press.Google Scholar
Wood, J. R., Brennan, L. J., McLoughlin, T. A., Tatemoto, K. & Mutt, V. (1982). Comparison of the effects of natural and synthetic PHI on gallbladder fluid transport. Regulatory Peptides 4, 383.CrossRefGoogle Scholar