Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T11:44:37.292Z Has data issue: false hasContentIssue false

Study of Trypanosoma cruzi epimastigote cell death by NMR-visible mobile lipid analysis

Published online by Cambridge University Press:  05 January 2012

DIEGO BENITEZ
Affiliation:
Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
HORACIO PEZAROGLO
Affiliation:
Laboratorio de Resonancia Magnética Nuclear, Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
VERÓNICA MARTÍNEZ
Affiliation:
Laboratorio de Resonancia Magnética Nuclear, Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
GABRIELA CASANOVA
Affiliation:
Unidad de Microscopía Electrónica de Transmisión, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
GONZALO CABRERA
Affiliation:
Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
NORBEL GALANTI
Affiliation:
Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
MERCEDES GONZÁLEZ
Affiliation:
Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
HUGO CERECETTO*
Affiliation:
Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
*
*Corresponding author: Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay. Tel: +598 2 525 86 18 (7-216). Fax: +598 2 525 0749. E-mail: hcerecet@fq.edu.uy

Summary

Cell death mechanisms in Trypanosoma cruzi have not been disclosed in detail though different conventional techniques have been used in the classification of parasite-cell death type. Nuclear magnetic resonance (NMR) has successfully been used as a tool to evaluate the onset of apoptosis in a number of higher eukaryote-cell models analysing the ratio of CH2/CH3 integration from the visible mobile lipids (VML). Surprisingly, this versatile non-invasive spectroscopy technique has never been employed with this purpose in T. cruzi. In the present study it is shown that under different parasite death-conditions the ratio CH2/CH3 varied drastically. Thus, T. cruzi epimastigotes in apoptotic conditions increase significantly this ratio while in necrotic as well as in autophagic situations the parasites maintain the VML, CH2/CH3 ratio, in normal values. Additionally, other VML markers commonly used in these studies, such as the change in the region of methyl-choline moiety, -N+(CH3)3, exhibited different particular patterns according to the type of cell death. Our results suggest that the 1H NMR-VML technique is an adequate tool to discriminate different T. cruzi death pathways.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alloatti, A., Testero, S. A. and Uttaro, A. D. (2009). Chemical evaluation of fatty acid desaturases as drug targets in Trypanosoma cruzi. International Journal for Parasitology 39, 985993.CrossRefGoogle ScholarPubMed
Alloatti, A. and Uttaro, A. D. (2011). Highly specific methyl-end fatty-acid desaturases of trypanosomatids. Molecular and Biochemical Parasitology 175, 126132.CrossRefGoogle ScholarPubMed
Al-Saffar, N. M., Titley, J. C., Robertson, D., Clarke, P. A., Jackson, L. E., Leach, M. O. and Ronen, S. M. (2002). Apoptosis is associated with triacylglycerol accumulation in Jurkat T-cells. British Journal of Cancer 86, 963970.CrossRefGoogle ScholarPubMed
Alvarez, V. E., Kosec, G., Sant'Anna, C., Turk, V., Cazzulo, J. J. and Turk, B. (2008 a). Autophagy is involved in nutritional stress response and differentiation in Trypanosoma cruzi. The Journal of Biological Chemistry 283, 34543464.CrossRefGoogle ScholarPubMed
Alvarez, V. E., Kosec, G., Sant'Anna, C., Turk, V., Cazzulo, J. J. and Turk, B. (2008 b). Blocking autophagy to prevent parasite differentiation. A possible new strategy for fighting parasitic infections? Autophagy 4, 361363.CrossRefGoogle ScholarPubMed
Ameisen, J. C., Idzioerk, T., Billaut-Mulot, O., Tissier, J. P., Potentier, A. and Ouaissi, A. (1995). Apoptosis in a unicellular eukaryote (Trypanosoma cruzi): implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival. Cell Death & Differentiation 2, 285300.Google Scholar
Besteiro, S., Williams, R. A., Morrison, L. S., Coombs, G. H. and Mottram, J. C. (2006). Endosome sorting and autophagy are essential for differentiation and virulence of Leishmania major. The Journal of Biological Chemistry 281, 1138411396.CrossRefGoogle ScholarPubMed
Blankenberg, F. G., Storrs, R. W., Naumovski, L., Goralski, T. and Spielman, D. (1996). Detection of apoptotic cell death by proton nuclear magnetic resonance spectroscopy. Blood 87, 19511956.CrossRefGoogle ScholarPubMed
Bollard, M. E., Xu, J., Purcell, W., Griffin, J. L., Quirk, C., Holmes, E. and Nicholson, J. K. (2002). Metabolic profiling of the effects of D-galactosamine in liver spheroids using 1H NMR and MAS-NMR spectroscopy. Chemical Research in Toxicology 15, 13511359.CrossRefGoogle ScholarPubMed
Boiani, L., Aguirre, G., González, M., Cerecetto, H., Chidichimo, A., Cazzulo, J. J., Bertinaria, M. and Guglielmo, S. (2008). Furoxan-, alkylnitrate-derivatives and related compounds as anti-trypanosomatid agents: mechanism of action studies. Bioorganic & Medicinal Chemistry 16, 79007907.CrossRefGoogle ScholarPubMed
Caterina, M. C., Perillo, I. A., Boiani, L., Pezaroglo, H., Cerecetto, H., González, M. and Salerno, A. (2008). Imidazolidines as new anti-Trypanosoma cruzi agents: Biological evaluation and structure-activity relationships. Bioorganic & Medicinal Chemistry 16, 22262234.CrossRefGoogle ScholarPubMed
Cerecetto, H. and González, M. (2010). Synthetic medicinal chemistry in Chagas' disease: Compounds at the final stage of “Hit-to-Lead” phase. Pharmaceuticals 3, 810838.CrossRefGoogle ScholarPubMed
Cunha-e-Silva, N., Sant'Anna, C., Pereira, M. G., Porto-Carreiro, I., Jeovanio, A. L. and de Souza, W. (2006). Reservosomes: Multipurpose organelles? Parasitology Research 99, 325327.CrossRefGoogle ScholarPubMed
Deolindo, P., Teixeira-Ferreira, A. S., DaMatta, R. A. and Alves, E. W. (2010). L-Amino acid oxidase activity present in fractions of Bothrops jararaca venom is responsible for the induction of programmed cell death in Trypanosoma cruzi. Toxicon 56, 944955.CrossRefGoogle ScholarPubMed
Florin-Christensen, M., Florin-Christensen, J., de Isola, E. D., Lammel, E., Meinardi, E., Brenner, R. R. and Rasmussen, L. (1997). Temperature acclimation of Trypanosoma cruzi epimastigote and metacyclic trypomastigote lipids. Molecular and Biochemical Parasitology 88, 2533.CrossRefGoogle ScholarPubMed
Freire-de-Lima, C. G., Nascimento, D. O., Soares, M. B., Bozza, P. T., Castro-Faria-Neto, H. C., de Mello, F. G., DosReis, G. A. and Lopes, M. F. (2000). Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature, London 403, 199203.CrossRefGoogle ScholarPubMed
Griffin, J. L., Mann, C. J., Scott, J., Shoulders, C. C. and Nicholson, J. K. (2001). Choline containing metabolites during cell transfection: an insight into magnetic resonance spectroscopy detectable changes. FEBS Letters 509, 263266.CrossRefGoogle ScholarPubMed
Griffiths, J. R. and Glickson, J. D. (2000). Monitoring pharmacokinetics of anticancerdrugs: non-invasive investigation using magnetic resonance spectroscopy. Advanced Drug Delivery Reviews 41, 7589.CrossRefGoogle Scholar
Hakumäki, J. M., Poptani, H., Sandmair, A. M., Ylä-Herttuala, S. and Kauppinen, R. A. (1999). 1H MRS detects polyunsaturated fatty acid accumulation during gene therapy of glioma: implications for the in vivo detection of apoptosis. Nature Medicine 5, 13231327.CrossRefGoogle ScholarPubMed
Hakumäki, J. M. and Kauppinen, R. A. (2000). 1H NMR visible lipids in the life and death of cells. Trends in Biochemical Sciences 25, 357362.CrossRefGoogle ScholarPubMed
Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature 407, 770776.CrossRefGoogle ScholarPubMed
Irigoín, F., Inada, N. M., Fernandes, M. P., Piacenza, L., Gadelha, F. R., Vercesi, A. E. and Radi, R. (2009). Mitochondrial calcium overload triggers complement-dependent superoxide-mediated programmed cell death in Trypanosoma cruzi. The Biochemical Journal 418, 595604.CrossRefGoogle ScholarPubMed
Jimenez, V., Paredes, R., Sosa, M. A. and Galanti, N. (2008). Natural programmed cell death in T. cruzi epimastigotes maintained in axenic cultures. Journal of Cellular Biochemistry 105, 688698.CrossRefGoogle Scholar
Kettunen, M. I. and Brindle, K. M. (2005). Apoptosis detection using magnetic resonance imaging and spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy 47, 175185.CrossRefGoogle Scholar
Lehtimäki, K. K., Valonen, P. K., Griffin, J. L., Väisänen, T. H., Gröhn, O. H., Kettunen, M. I., Vepsäläinen, J., Ylä-Herttuala, S., Nicholson, J. and Kauppinen, R. A. (2003). Metabolite changes in BT4C rat gliomas undergoing ganciclovir-thymidine kinase gene therapy-induced programmed cell death as studied by 1H NMR spectroscopy in vivo, ex vivo, and in vitro. The Journal of Biological Chemistry 278, 4591545923.CrossRefGoogle ScholarPubMed
Levine, B. and Yuan, J. (2005). Autophagy in cell death: an innocent convict? The Journal of Clinical Investigation 115, 26792688.CrossRefGoogle ScholarPubMed
Lutz, N. W. (2006). Contributions of metabol(om)ic NMR spectroscopy to the investigation of apoptosis. Comptes Rendus Chimie 9, 445451.CrossRefGoogle Scholar
Menna-Barreto, R. F., Salomão, K., Dantas, A. P., Santa-Rita, R. M., Soares, M. J., Barbosa, H. S. and de Castro, S. L. (2009 a). Different cell death pathways induced by drugs in Trypanosoma cruzi: an ultrastructural study. Micron 40, 157–68.CrossRefGoogle ScholarPubMed
Menna-Barreto, R. F., Corrêa, J. R., Cascabulho, C. M., Fernandes, M. C., Pinto, A. V., Soares, M. J. and de Castro, S. L. (2009 b). Naphthoimidazoles promote different death phenotypes in Trypanosoma cruzi. Parasitology 136, 499510.CrossRefGoogle ScholarPubMed
Mikhailenko, V. M., Philchenkov, A. A. and Zavelevich, M. P. (2005). Analysis of 1H NMR-detectable mobile lipid domains for assessment of apoptosis induced by inhibitors of DNA synthesis and replication. Cell Biology International 29, 3339.CrossRefGoogle ScholarPubMed
Milkevitch, M., Shim, H., Pilatus, U., Pickup, S., Wehrle, J. P., Samid, D., Poptani, H., Glickson, J. D. and Delikatny, E. J. (2005). Increases in NMR-visible lipid and glycerophosphocholine during phenylbutyrate-induced apoptosis in human prostate cancer cells. Biochimica et Biophysica Acta 1734, 112.CrossRefGoogle ScholarPubMed
Piacenza, P., Peluffo, G. and Radi, R. (2001). L-Arginine-dependent suppression of apoptosis in Trypanosoma cruzi: Contribution of the nitric oxide and polyamine pathways. Proceedings of the National Academy of Sciences, USA 98, 73017306.CrossRefGoogle ScholarPubMed
Quintero, M. R., Cabañas, M. E. and Arús, C. (2007). A possible cellular explanation for the NMR-visible mobile lipid (ML) changes in cultured C6 glioma cells with growth. Biochimica et Biophysica Acta 1771, 3144.CrossRefGoogle ScholarPubMed
Siminovitch, D. J., Ruocco, M. J., Olejniczak, E. T., Das Gupta, S. K. and Griffin, R. G. (1988). Anisotropic 2H-nuclear magnetic resonance spin-lattice relaxation in cerebroside- and phospholipid-cholesterol bilayer membranes. Biophysical Journal 54, 373381.CrossRefGoogle ScholarPubMed
Vilchez Larrea, S. C., Alonso, G. D., Schlesinger, M., Torres, H. N., Flawiá, M. M. and Fernández Villamil, S. H. (2011). Poly(ADP-ribose) polymerase plays a differential role in DNA damage-response and cell death pathways in Trypanosoma cruzi. International Journal for Parasitology 41, 405416.CrossRefGoogle Scholar
Welburn, S. C., Barcinski, M. A. and Williams, G. T. (1997). Programmed cell death in trypanosomatids. Parasitology Today 13, 2226.CrossRefGoogle ScholarPubMed
Zong, W. X. and Thompson, C. B. (2006). Necrotic death as a cell fate. Genes & Development 20, 115.CrossRefGoogle ScholarPubMed