Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T11:59:23.377Z Has data issue: false hasContentIssue false

Excystation of Cryptosporidium parvum at temperatures that are reached during solar water disinfection

Published online by Cambridge University Press:  06 February 2009

H. GÓMEZ-COUSO
Affiliation:
Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Universitario Sur, 15782 Santiago de Compostela (La Coruña), Spain
M. FONTÁN-SAINZ
Affiliation:
Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Universitario Sur, 15782 Santiago de Compostela (La Coruña), Spain
J. FERNÁNDEZ-ALONSO
Affiliation:
Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Universitario Sur, 15782 Santiago de Compostela (La Coruña), Spain
E. ARES-MAZÁS*
Affiliation:
Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Universitario Sur, 15782 Santiago de Compostela (La Coruña), Spain
*
*Corresponding author. Tel: +34 981 563 100. Ext. 14890. Fax: +34 981 593 316. E-mail: melvira.ares@usc.es

Summary

Species belonging to the genera Cryptosporidium are recognized as waterborne pathogens. Solar water disinfection (SODIS) is a simple method that involves the use of solar radiation to destroy pathogenic microorganisms that cause waterborne diseases. A notable increase in water temperature and the existence of a large number of empty or partially excysted (i.e. unviable) oocysts have been observed in previous SODIS studies with water experimentally contaminated with Cryptosporidium parvum oocysts under field conditions. The aim of the present study was to evaluate the effect of the temperatures that can be reached during exposure of water samples to natural sunlight (37–50°C), on the excystation of C. parvum in the absence of other stimuli. In samples exposed to 40–48°C, a gradual increase in the percentage of excystation was observed as the time of exposure increased and a maximum of 53·81% of excystation was obtained on exposure of the water to a temperature of 46°C for 12 h (versus 8·80% initial isolate). Under such conditions, the oocyst infectivity evaluated in a neonatal murine model decreased statistically with respect to the initial isolate (19·38% versus 100%). The results demonstrate the important effect of the temperature on the excystation of C. parvum and therefore on its viability and infectivity.

Type
Research Article
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amar, C. F., Dear, P. H. and McLauchlin, J. (2004). Detection and identification by real time PCR/RFLP analyses of Cryptosporidium species from human faeces. Letters in Applied Microbiology 38, 217222.CrossRefGoogle ScholarPubMed
Belosevic, M., Guy, R. A., Taghi-Kilani, R., Neumann, N. F., Gyürék, L. L., Liyanage, L. R., Millard, P. J. and Finch, G. R. (1997). Nucleic acid stains as indicators of Cryptosporidium parvum oocyst viability. International Journal for Parasitology 27, 787798.CrossRefGoogle ScholarPubMed
Campbell, A. T., Robertson, L. J. and Smith, H. V. (1992). Viability of Cryptosporidium parvum oocysts: correlation of in vitro excystation with inclusion or exclusion of fluorogenic vital dyes. Applied and Environmental Microbiology 58, 34883493.CrossRefGoogle ScholarPubMed
Conroy, R. M., Meegan, M. E., Joyce, T., McGuigan, K. and Barnes, J. (1996). Solar disinfection of water reduces diarrhoeal disease: an update. Archives of Disease in Childhood 81, 337338.CrossRefGoogle Scholar
D'Antonio, R. G., Winn, R. E., Taylor, J. P., Gustafson, T. L., Current, W. L., Rhodes, M. M., Gary, G. W. Jr. and Zajac, R. A. (1985). A waterborne outbreak of cryptosporidiosis in normal hosts. Annals of Internal Medicine 103, 886888.Google Scholar
Dowd, S. E. and Pillai, S. D. (1997). A rapid viability assay for Cryptosporidium oocysts and Giardia cysts for use in conjunction with indirect fluorescent antibody detection. Canadian Journal of Microbiology 43, 658662.CrossRefGoogle ScholarPubMed
Fayer, R. (2004). Cryptosporidium: a water-borne zoonotic parasite. Veterinary Parasitology 126, 3756.Google Scholar
Fayer, R. (2007). General biology. In Cryptosporidium and Cryptosporidiosis (ed. Fayer, R. and Xiao, L.), pp. 142. CRC Press, Boca Raton, FL, USA.Google Scholar
Fayer, R., Trout, J. M. and Jenkins, M. C. (1998). Infectivity of Cryptosporidium parvum oocysts stored in water at environmental temperatures. Journal of Parasitology 84, 11651169.Google Scholar
Jenkins, M. B., Anguish, L. J., Bowman, D. D., Walker, M. J. and Ghiorse, W. C. (1997). Assessment of a dye permeability assay for determination of inactivation rates of Cryptosporidium parvum oocysts. Applied and Environmental Microbiology 63, 38443850.Google Scholar
Jenkins, M., Trout, J. M., Higgins, J., Dorsch, M., Veal, D. and Fayer, R. (2003). Comparison of tests for viable and infectious Cryptosporidium parvum oocysts. Parasitology Research 89, 15.Google Scholar
Kilani, R. T. and Sekla, L. (1987). Purification of Cryptosporidium oocysts and sporozoites by cesium chloride and Percoll gradients. American Journal of Tropical Medicine and Hygiene 36, 505508.CrossRefGoogle ScholarPubMed
King, B. J. and Monis, P. T. (2006). Critical processes affecting Cryptosporidium oocyst survival in the environment. Parasitology 134, 309323.Google Scholar
King, B. J., Keegan, A. R., Monis, P. T. and Saint, C. P. (2005). Environmental temperature controls Cryptosporidium oocyst metabolic rate and associated retention of infectivity. Applied and Environmental Microbiology 71, 38483857.CrossRefGoogle ScholarPubMed
Lorenzo-Lorenzo, M. J., Ares-Mazás, M. E., Villacorta-Martínez de Maturana, I. and Durán-Oreiro, D. (1993). Effect of ultraviolet disinfection of drinking water on the viability of Cryptosporidium parvum oocysts. Journal of Parasitology 79, 6770.CrossRefGoogle ScholarPubMed
McGuigan, K. G., Joyce, T. M., Conroy, R. M., Gillespie, J. B. and Elmore-Meegan, M. (1998). Solar disinfection of drinking water contained in transparent plastic bottles: characterizing the bacterial inactivation process. Journal of Applied Microbiology 84, 11381148.Google Scholar
McGuigan, K. G., Joyce, T. M. and Conroy, R. M. (1999). Solar disinfection: use of sunlight to decontaminate drinking water in developing countries. Journal of Medical Microbiology 48, 785787.Google Scholar
McGuigan, K. G., Méndez-Hermida, F., Castro-Hermida, J. A., Ares-Mazás, E., Kehoe, S. C., Boyle, M., Sichel, C., Fernández-Ibáñez, P., Meyer, B. P., Ramalingham, S. and Meyer, E. A. (2006). Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water. Journal of Applied Microbiology 101, 453463.CrossRefGoogle ScholarPubMed
Méndez-Hermida, F., Castro-Hermida, J. A., Ares-Mazás, E., Kehoe, S. C. and McGuigan, K. G. (2005). Effect of batch-process solar disinfection on survival of Cryptosporidium parvum oocysts in drinking water. Applied and Environmental Microbiology 71, 16531654.Google Scholar
Neumann, N. F., Gyürek, L. L., Gammie, L., Finch, G. R. and Belosevic, M. (2000). Comparison of animal infectivity and nucleic acid staining for assessment of Cryptosporidium parvum viability in water. Applied and Environmental Microbiology 66, 406412.Google Scholar
Nichols, G. (2007). Epidemiology. In Cryptosporidium and Cryptosporidiosis (ed. Fayer, R. and Xiao, L.), pp. 79118. CRC Press, Boca Raton, FL, USA.Google Scholar
Peeters, J. E., Mazás, E. A., Masschelein, W. J., Villacorta Martínez de Maturana, I. and Debacker, E. (1989). Effect of disinfection of drinking water with ozone or chlorine dioxide on survival of Cryptosporidium parvum oocysts. Applied and Environmental Microbiology 55, 15191522.Google Scholar
Robertson, L. J. and Gjerde, B. K. (2007). Cryptosporidium oocysts: challenging adversaries? Trends in Parasitology 23, 344347.CrossRefGoogle ScholarPubMed
Robertson, L. J., Campbell, A. T. and Smith, H. V. (1993). In vitro excystation of Cryptosporidium parvum. Parasitology 106, 1319.Google Scholar
Rochelle, P. A., Upton, S. J., Montelone, B. A. and Woods, K. (2005). The response of Cryptosporidium parvum to UV light. Trends in Parasitology 21, 8187.CrossRefGoogle ScholarPubMed
Smith, H. V., Nichols, R. A. and Grimason, A. M. (2005). Cryptosporidium excystation and invasion: getting to the guts of the matter. Trends in Parasitology 21, 133142.Google Scholar
Sommer, B., Mariño, A., Solarte, Y., Salas, M. L., Dierolf, C., Valiente, C., Mora, D., Rechsteiner, R., Setter, P., Wirojanagud, W., Ajarmeh, H., Al-Hassan, A. and Wegelin, M. (1997). SODIS – an emerging water treatment process. Journal of Water Supply: Research and Technology-Aqua 46, 127137.Google Scholar
Vetterling, J. M. and Doran, D. J. (1969). Storagen polysaccharide in coccidial sporozoites after excystation and penetration of cells. Journal of Protozoology 16, 772775.Google Scholar
Widmer, G., Klein, P. and Bonilla, R. (2007). Adaptation of Cryptosporidium oocysts to different excystation conditions. Parasitology 134, 15831588.CrossRefGoogle ScholarPubMed