Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T08:57:40.833Z Has data issue: false hasContentIssue false

The Phylum Vendobionta: a sister group of the Eumetazoa?

Published online by Cambridge University Press:  08 February 2016

Leo W. Buss
Affiliation:
Departments of Biology and Geology and Geophysics, Yale University, New Haven, Connecticut 06511
Adolf Seilacher
Affiliation:
Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06511, and Geologisches Institut der Universität Tübingen, Sigwartstrasse 10, 7400 Tübingen, Germany

Abstract

We offer an alternative interpretation of the Kingdom Vendobionta as a monophyletic sister group to the Eumetazoa. We hypothesize that the Vendobionta are cnidarian-like organisms that lacked cnidae. Cnidarians are held to have arisen by acquisition of cnidae by symbiosis with a microsporidian. Our analysis differs from existing interpretations of the Ediacaran fossils as ancestors of extant cnidarians in that we do not regard any of these forms as either polypoid or medusoid. This interpretation requires the erection of a new metazoan phylum, the Vendobionta.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Christen, R., Ratto, A., Baroin, A., Perasso, R., Grell, K. G., and Adoutte, A. 1991. An analysis of the origin of metazoans, using comparisons of partial sequences of the 28S RNA, reveals an early emergence of triploblasts. EMBO Journal 10:499503.CrossRefGoogle ScholarPubMed
Conway Morris, S. 1993a. Early metazoan evolution and the Vendian-Cambrian fossil record. Nature 361:219225.CrossRefGoogle Scholar
Conway Morris, S. 1993b. Ediacaran-like fossils in Cambrian Burgess Shaletype faunas of North America. Palaeontology (in press).Google Scholar
Diehl, F. A., and Burnett, A. 1964. The role of interstitial cells in the maintenance of hydra. I. Specific destruction of interstitial cells in normal, asexual, non-budding animals. Journal of Experimental Zoology 155:253260.CrossRefGoogle ScholarPubMed
Field, K. G., Olsen, G. J., Lane, D. J., Giovannoni, S. J., Ghiselin, M. G., Raff, E. C., Pace, N. R., and Raff, R. A. 1988. Molecular phylogeny of the animal kingdom. Science 239:748753.CrossRefGoogle ScholarPubMed
Glaessner, M. F. 1984. The dawn of animal life, a biohistorical study. Cambridge University Press, Cambridge.Google Scholar
Kudo, R. R., and Daniels, E. W. 1963. An electron microscope study of the spore of a microsporidian, Thelohania californica. Journal of Protozoology 10:112120.CrossRefGoogle ScholarPubMed
Lake, J. A. 1990. The origin of the Metazoa. Proceedings of the National Academy of Sciences, U.S.A. 87:17631766.CrossRefGoogle ScholarPubMed
McMenamin, M. A. S. 1986. The garden of Ediacara. Palaios 1:178182.CrossRefGoogle Scholar
Miles, A., and Miller, D. J. 1992. Genomes of diploblastic organisms contain homeoboxes: sequence of eveC, an even-skipped homologue from the cnidarian Acropora formosa. Proceedings of the Royal Society, London 248:159161.Google ScholarPubMed
Müller, W. E. G. 1967. Differenzierungspotenzen und Geschlechtstabilitat der I-zellen von Hydractinia echinata. Wilhelm Roux' Archiv für Entwicklungsmechanik 159:412432.CrossRefGoogle Scholar
Müller, W. E. G. 1968. Elimination der I-zellen durch alkylierende Cytostatika und deren Effekte auf die Embryonalentwicklung bei Hydractinia echinata. Experimental Cell Research 49:448458.CrossRefGoogle Scholar
Murtha, M. T., Leckman, J. F., and Ruddle, F. H. 1991. Detection of homeobox genes in development and evolution. Proceedings of the National Academy of Sciences, U.S.A. 88:1071110715.CrossRefGoogle ScholarPubMed
Norris, R. D. 1989. Cnidarian taphonomy and affinities of the Ediacara biota. Lethaia 22:381383.CrossRefGoogle Scholar
Retallack, G. J. 1992. Were the Ediacaran fossils lichenlike organisms? Abstracts of the Annual Meetings of the Geological Society of America A225-A227.Google Scholar
Schierwater, B., Murtha, M., Dick, M., Ruddle, F. R., and Buss, L. W. 1991. Homeoboxes in cnidarians. Journal of Experimental Zoology 260:413416.CrossRefGoogle ScholarPubMed
Schlichter, D. 1991. A perforated gastrovascular cavity in the symbiotic deep-water coral Leptoseris fragilis: a new strategy to optimize heterotrophic nutrition. Helgoländer Meeresforschungen 45:423443.CrossRefGoogle Scholar
Schummer, M., Scheurlen, I., Schaller, C., and Galliot, B. 1992. HOM/HOX homeobox genes are present in hydra (Chlorohydra viridissima) and are differentially expressed during regeneration. EMBO Journal 11:18151823.CrossRefGoogle ScholarPubMed
Seilacher, A. 1984. Late Precambrian and Early Cambrian Metazoa: preservational or real extinctions? Pp. 159168in Holland, H. D. and Trendall, A. F., eds. Patterns of change in earth evolution. Springer, Berlin.CrossRefGoogle Scholar
Seilacher, A. 1988. Vendozoa: organismic construction in the Phanerozoic biosphere. Lethaia 22:229239.CrossRefGoogle Scholar
Seilacher, A. 1992. Vendobionta and Psammocorallia: lost constructions of PreCambrian evolution. Journal of the Geological Society, London 149:607613.CrossRefGoogle Scholar
Shenk, M., Bode, H. R., and Steele, R. E. 1993. Expression of Cnox-2, a HOM/HOX gene in Hydra, is correlated with axial pattern formation. Development 117:657667.CrossRefGoogle ScholarPubMed
Valentine, J. W. 1992. Dickinsonia as a polypoid organism. Paleobiology 18:378382.CrossRefGoogle Scholar
Vossbrinck, C. R., Maddox, J. V., Friedman, S., Debrunner-Vossbrinck, B. A., and Woese, C. R. 1987. Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326:411414.CrossRefGoogle ScholarPubMed