Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T10:33:06.281Z Has data issue: false hasContentIssue false

Sedimentary architecture and optical dating of Middle and Late Pleistocene Rhine-Meuse deposits - fluvial response to climate change, sea-level fluctuation and glaciation

Published online by Cambridge University Press:  01 April 2016

H.J.T. Weerts
Affiliation:
TNO-NITG, Geology Division, P.O. Box 80015, 3508 TA Utrecht, The Netherlands
J. Wallinga
Affiliation:
Netherlands Centre for Luminescence dating (NCL), Delft University of Technology, Faculty of Applied Sciences, Mekelweg 15, 2629 JB Delft, The Netherlands
H. de Wolf
Affiliation:
TNO-NITG, Geology Division, P.O. Box 80015, 3508 TA Utrecht, The Netherlands
K.M. Cohen
Affiliation:
Department of Physical Geography, Faculty of Geosciences, Utrecht University P.O. Box 80115, 3508 TC, Utrecht, The Netherlands

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Eight continuous corings in the west-central Netherlands show a 15 to 25 m thick stacked sequence of sandy to gravelly channel-belt deposits of the Rhine-Meuse system. This succession of fluvial sediments was deposited under net subsiding conditions in the southern part of the North Sea Basin and documents the response of the Rhine-Meuse river system to climate and sea-level change and to the glaciation history. On the basis of grain size characteristics, sedimentological structures, nature and extent of bounding surfaces and palaeo-ecological data, the sequence was subdivided into five fluvial units, an estuarine and an aeolian unit. Optical dating of 34 quartz samples showed that the units have intra Saalian to Weichselian ages (Marine Isotope Stages 8 to 2). Coarse-grained fluvial sediments primarily deposited under cold climatic conditions, with low vegetation cover and continuous permafrost. Finer-grained sediments generally deposited during more temperate climatic conditions with continuous vegetation cover and/or periods of sea-level highstand. Most of the sedimentary units are bounded by unconformities that represent erosion during periods of climate instability, sea-level fall and/or glacio-isostatic uplift.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2005

References

Aalbersberg, G. & Litt, T., 1998. Multiproxy climate reconstruction for the Eemian and Early Weichselian. Journal of Quaternary Science 13: 367390.Google Scholar
Aitken, M.J., 1998. An Introduction to Optical Dating. Oxford University Press (Oxford): 267 pp.CrossRefGoogle Scholar
Allen, G.P., 1991. Sedimentary processes and facies in the Gironde Estuary: a recent example of macrotidal estuarine systems. In Clastic Tidal Sedimentology. Edited by Smith, D.G., Reinson, G.E., Zaitlin, B.A. andRahmani, R.A.. Canadian Society of Petroleum Geologists, Memoir 16, 2940.Google Scholar
Bassinot, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackleton, N.J. & Lancelot, Y., 1994. The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth and Planetary Science Letters 126: 91108.Google Scholar
Berendsen, H.J.A., Hoek, W.Z. & Schorn, E.A., 1995. Late Weichselian and Holocene river channel changes of the rivers Rhine and Meuse in the central Netherlands. Paläoklimaforschung 14: 151171.Google Scholar
Berendsen, H.J.A. & Stouthamer, E. 2002. Paleogeographic evolution and avulsion history of the Holocene Rhine-Meuse delta. Netherlands Journal of Geosciences 81: 97112.CrossRefGoogle Scholar
Boenigk, W. & Frechen, M., 1998. Zur Geologie der Dekschichten von Kärlich/Mittelrhein. Eiszeitalter und Gegenwart 48: 3849.Google Scholar
Boenigk, W., 2002. The Pleistocene drainage pattern in the Lower Rhine Basin. Netherlands Journal of Geosciences 81: 202209.CrossRefGoogle Scholar
Boersma, J.R. & Terwindt, J.H.J., 1981. Neap-spring tide seguences of intertidal shoal deposits in a mesotidal estuary. Sedimentology 28: 151170.Google Scholar
Cameron, T.D.J., Laban, C., Mesdag, C.M. & Schüttenhelm, R.T.E., 1986. Indefatigable: Sheet 53° N / 02° E. Quaternary Geology, 1 : 250,000 series British Geological Survey and Geological Survey of the Netherlands.Google Scholar
Church, M. & Miles, M.J., 1982. Processes and mechanisms of bank erosion. In Gravel-bed rivers. Edited by Hey, R.D., Bathurst, J.C. and Thome, C.R.. John Wiley and Sons, New York, Chapter 9: 259271.Google Scholar
Cohen, K.M., 2003. Differential subsidence within a coastal prism. Late-Glacial - Holocene tectonics in the Rhine-Meuse delta, the Netherlands. Published Ph.D. Thesis, Utrecht University. The Royal Dutch Geographical Society/Faculty of Geographical Sciences, Utrecht University, Nederlands Geografische Studies 316: 172 pp.Google Scholar
Costard, F., Dupeyrat, L., Gautier, E. & Carey-Gailhardis, E., 2003. Fluvial thermal erosion investigations along a rapidly eroding river bank: application to the Lena River (central Siberia). Earth Surfarce Processes and Landforms 28: 13491359.Google Scholar
Cutler, K.B., Edwards, R.L., Cheng, H. Adkins, J., Gallup, C.D., Cutler, P.M., Burr, B.S. & Bloom, A.L., 2003. Rapid sea-level fall and deep-ocean temperature change since the last interglacial period. Earth and Planetary Science Letters 206: 253271.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S.J., Calusen, H.B., Dahl, J.D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjornsdottir, A.E., Jouzel, J. & Bond, G., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364: 218220.Google Scholar
De Beaulieu, J., Andrieu-Ponel, M., Reille, E., Griiger, C., Tzedakis, C. Svobodova, H., 2001. An attempt at correlation between the Velay pollen seguence and the Middle Pleistocene stratigraphy from central Europe. Quaternary Science Reviews 20: 15931602.Google Scholar
De Mulder, E.F.J., Geluk, M.C., Ritsema, I., Westerhoff, W.E. & Wong, T.E., 2003. De ondergrond van Nederland. Geologie van Nederland. Nederlands Instituut voor Toegepaste Geowetenschappen TNO: 379 pp.Google Scholar
Doppert, J.W.Chr., Ruegg, G.H.J., van Staalduinen, C.J., Zagwijn, W.H. & Zandstra, J.G., 1975. Formaties van het Kwartair en Boven-Tertiair in Nederland. In: Zagwijn, W.H. & C.J., van Staalduinen (eds): Toelichting bij geologische overzichtskaarten van Nederland. Rijks Geologische Dienst (Haarlem): 1156.Google Scholar
Ebbing, J.H.J., Weerts, H.J.T. & Westerhoff, W.E., 2003. Towards an integrated land-sea stratigraphy of the Netherlands. Quaternary Science Reviews 22: 15791587.Google Scholar
Ehlers, J., 1996. Quaternary and Glacial Geology. John Wiley & Sons (Chichester, England): 578 pp.Google Scholar
Ehlers, J. & Gibbard, P.L., 2004. Quaternary Glaciations - Extent and chronology. Part I: Europe. Developments in Quaternary Sciences 2. Elsevier: 488 pp. + CD.Google Scholar
Friedrich, M., Kromer, B., Spurk, M., Hofmann, J. & Kaiser, K.L., 1999. Paleo-environment and radiocarbon calibration as derived from Lateglacial/Early Holocene tree-ring chronologies. Quaternary International 61: 2739.CrossRefGoogle Scholar
Gibbard, P.L., 1994. Pleistocene History of the Lower Thames Valley. Cambridge University Press (Cambridge): 229 pp.Google Scholar
Grüger, E., 1989. Palynostratigraphy of the last interglacial/glacial cycle in Germany. Quaternary International 3-4: 6979.Google Scholar
Guiot, J., Pons, A., De Beaulieu, J.L. & Reille, M., 1989. A 140,000-year continental climate reconstruction from two European pollen records. Nature 338: 309313.Google Scholar
Gutter, F., Andrieu-Ponel, V., De Beaulieu, J.L., Ceddadi, R. Jr., Calvez, M., Ponel, P., Reille, M., Keller, T. & Goeury, C., 2003. The last climatic cycles in Western Europe: a comparison between long continuous lacustrine seguences from France and other terrestrial records. Quaternary International 111: 5974.Google Scholar
Houmark-Nielsen, M. & Kjaer, K.H., 2003. Southwest Scandinavia, 40–15 kyr BP: palaeogeography and environmental change. Journal of Quaternary Science 18: 769786.Google Scholar
Huijzer, B. & Vandenberghe, J., 1998. Climatic reconstruction of the Weichselian Pleniglacial in northwestern and central Europe. Journal of Quaternary Science 13: 391417.3.0.CO;2-6>CrossRefGoogle Scholar
Johnson, S.J., Clausen, H.B., Dansgaard, W., Fuhrer, K., Gundestrijp, N., Hammer, C.U., Iversen, P., Jouzel, J., Stauffer, B. & Steffensen, J.P., 1998. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359: 311313.CrossRefGoogle Scholar
Kasse, C., Bohncke, S. Vandenberghe, J., 1995. Climatic change and fluvial dynamics of the Maas during the late Weichselian and Early Holocene. Paläoklimaforschung 14: 123150.Google Scholar
Kiden, P., Denys, L. & Johnston, P., 2002. Late Quaternary sea-level change and isostatic and tectonic land movements along the Belgian-Dutch North Sea coast: geological data and model results. Journal of Quaternary Science 17: 535546.Google Scholar
Klostermann, J., 1992. Das Quartär der Niederrheinischen Bucht. Ablagerungen der letzten Eiszeit am Niederrhein. Geologisches Landesamt Nordrein Westfalen, Krefeld. Joh. van Acken (Krefeld): 200 pp.Google Scholar
Kolstrup, E., 1980. Climate and stratigraphy in Northwestern Europe between 30,000 B.P. and 13,000 B.P. with special reference to the Netherlands. Mededelingen Rijks Geologische Dienst 32-15: 181253.Google Scholar
Laban, C., 1995. The Pleistocene glaciations in the Dutch sector of the North Sea. A synthesis of sedimentary and seismic data. Thesis University of Amsterdam, 194 pp.Google Scholar
Lambeck, K., 1995. Late Devensian and Holocene shorelines of the British Isles and North Sea from models of glacio-hydro-isostatic rebound. Journal of the Geological Society of London 152: 437448.Google Scholar
Lambeck, K., Smither, C. & Johnston, P., 1998. Sea-level change, glacial rebound and mantle viscosity for northern Europe. Geophysical Journal International 134, 102–144.Google Scholar
Miall, A.D., 1996. The Geology of Fluvial Deposits. Springer (Berlin): 585 pp.Google Scholar
Murray, A.S., Marten, R., Johnston, A. & Marten, P., 1987. Analysis for naturally occurring radionuclides at environmental concentrations by gamma spectrometry. Journal of Radioanalytical and Nuclear Chemistry 115: 263288.CrossRefGoogle Scholar
Murray, A.S. & Olley, J.M., 2002. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. Geochronometria, 21: 116.Google Scholar
Murray, A.S. & Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32: 5773.Google Scholar
Oele, E., Apon, W., Fischer, M.M., Hoogendoorn, R., Mesdag, C.S., De Mulder, E.F.J., Overzee, B., Sesören, A.. & Westerhoff, W.E., 1983. Surveying The Netherlands: sampling techniques, maps and their applications. Geologie en Mijnbouw 62: 355372.Google Scholar
Pons, L.J., 1957. De geologie, de bodemvorming en de waterstaatkundige ontwikkeling van het Land van Maas en Waal en een gedeelte van het Rijk van Nijmegen. Verslagen Landbouwkundige Onderzoekingen 646: 129 pp.Google Scholar
Riezenbos, P.A., 1971. A contribution to the sedimentary petrological description of the Maas deposits in southern Limburg (The Netherlands). Geologie en Mijnbouw 50: 505514.Google Scholar
Renssen, H. & Vandenberghe, J., 2003. Investigation of the relationship between permafrost distribution in NW Europe and extensive winter sea-ice cover in the North Atlantic Ocean during the cold phases of the Last Glaciation. Quaternary Science Reviews 22: 209223.Google Scholar
Schokker, J., Cleveringa, P. & Murray, A.S., 2004. Palaeoenvironmental reconstruction and 0SL dating of terrestrial Eemian deposits in the southeastern Netherlands. Journal of Quaternary Science 19: 193202.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., Van der Plicht, J. & Spurk, M., 1998. INTCAL98 Radiocarbon Age Calibration, 24,000-0 cal BP. Radiocarbon 40: 10411083.Google Scholar
Teunissen, D. & De Man, R., 1981. Enkele palynologische waarnemingen aan het kleidek van de Formatie van Kreftenheye bij Nijmegen. Mededelingen van de Afdeling Biogeologie Sectie Biologie 12, Nijmegen University, 20 pp.Google Scholar
Thome, K.N., 1959. Das Inlanders am Niederrhein. Fortschritte in der Geologie von Rheinland und Westfalen 4: 197246.Google Scholar
Törnqvist, R.E. 1995. Discussion: alluvial architecture of the Quaternary Rhine-Meuse river system in the Netherlands, by Ruegg, G.H.G., Geologie en Mijnbouw 72: 321330, 1994. Geologie en Mijnbouw 74: 183–186.Google Scholar
Törnqvist, T.E., Weerts, H.J.T. & Berendsen, H.J.A., 1994. Definition of two new members in the upper Kreftenheye and Twente Formations (Quaternary, the Netherlands): a final solution to persistent confusion? Geologie en Mijnbouw 72: 251264.Google Scholar
Törnqvist, T.E., Wallinga, J., Murray, A.S., De Wolf, H., Cleveringa, P. & De Gans, W., 2000. Response of the Rhine-Meuse system (west-central Netherlands) to the last Quaternary glacio-eustatic cycles: a first assessment. Global and Planetary Change 27: 89111.Google Scholar
Törnqvist, T.E., Wallinga, J. & Busschers, F.S., 2003. Timing of the last sequence boundary in a fluvial setting near the highstand shoreline - Insights from optical dating. Geology 31: 279282.Google Scholar
Van Andel, T.H. & Tzedakis, P.C., 1996. Palaeolithic landscapes of Europe and environs, 150,000-25,000 years ago: an overview. Quaternary Science Reviews 15: 481500.Google Scholar
Van de Meene, E.A. & Zagwijn, W.H., 1978. Die Rheinläufe im deutschniederländischen Grenzgebiet seit der Saale-Kaltzeit. Überblick neuer geologischen und pollenanalytischen Untersuchungen. Fortschritte in der Geologie von Rheinland und Westfalen 28: 345359.Google Scholar
Van den Berg, M.W. & Beets, D., 1987. Saalian glacial deposits and morphology in the Netherlands. In: Van der Meer, J.J.M., (ed): Tills and Glaciotectonics. Balkema (Rotterdam): 235251.Google Scholar
Van den Berg, M.W., 1996. Fluvial sequences of the Maas, a 10 Ma record of neotectonics and climate change at various timescales. Ph.D. Thesis. Wageningen Agricultural University: 181 pp.Google Scholar
Van der Hammen, Th., Maarleveld, G.C., Vogel, J.C. & Zagwijn, W., 1967. Stratigraphy, climatic succession and radiocarbon dating of the Last Glacial in the Netherlands. Geologie en Mijnbouw 46: 7995.Google Scholar
Van der Plicht, J., 1993. The Groningen radiocarbon calibration program. Radiocarbon 35: 231237.Google Scholar
Van Huissteden, J., Schwan, J.C.G. & Bateman, M.D., 2001. Environmental conditions and paleowind directions at the end of the Weichselian Late Pleniglacial recorded in aeolian sediments and geomorphology (Twente, Eastern Netherlands). Netherlands Journal of Geosciences 80: 118.Google Scholar
Van Huissteden, J. & Kasse, C., 2001. Detection of rapid climate change in Last Glacial fluvial successions in The Netherlands. Global and Planetary Change 28: 319339.Google Scholar
Van Huissteden, J., Gibbard, P. & Briant, R.M., 2003. Periglacial fluvial systems in northwest Europe during marine isotope stages 4 and 3. Quaternary International 79: 7588.Google Scholar
Vandenberghe, J., 1985. Paleoenvironment and stratigraphy during the Last Glacial in the Belgian-Dutch border region. Quaternary Research 24: 2338.Google Scholar
Vandenberghe, J., 1995. Timescales, climate and river development. Quaternary Science Reviews 14: 631638.Google Scholar
Vandenberghe, J., 2001. Permafrost during the Pleistocene in north west and central Europe. In: Paepe, R. and Melnikov, V. (eds): Permafrost Response on Economic development, Environmental Security and Natural Resources: 185194.Google Scholar
Vandenberghe, J. & Woo, M.K., 2002. Modern and ancient periglacial river types. Progress in Physical Geography 26: 479506.Google Scholar
Verbraeck, A., 1984. Toelichtingen bij de Geologische Kaart van Nederland 1:50.000. Blad Tiel West (39 W) en Blad Tiel Oost (39 0). Rijks Geologische Dienst (Haarlem): 335 pp.Google Scholar
Vos, P.C. & De Wolf, H., 1993. Diatoms as a tool for reconstructing sedimentary environments in coastal wetlands; methodological aspects. Hydrohiologica 269/270: 285296.Google Scholar
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.C., McManus, J.F., Lambeck, K., Balbon, E. & Labracherie, M., 2002. Sea-level and deep water temperature changes derived from benthic foraminifera isotopie records. Quaternary Science Reviews 21: 295305.Google Scholar
Wallinga, J., 2002. Optically stimulated luminescence dating of fluvial deposits: a review. Boreas 31: 303322.CrossRefGoogle Scholar
Wallinga, J., Törnqvist, T.E., Busschers, F.S. & Weerts, H.J.T., 2004. Allogenic forcing of the late-Quaternary Rhine-Meuse fluvial record: the interplay of climate change, sea-level change, and crustal movements. Basin Research 16: 535547.Google Scholar
Woo, M.K. & McCann, S.B., 1994. Climatic variability, climatic change, runoff and suspended sediment regimes in northern Canada. Physical Geography 15: 210226.Google Scholar
Zagwijn, W.H., 1973. Pollenanalytical studies of Holsteinian and Saalian beds in the northern Netherlands. Mededelingen Rijks Geologische Dienst N.S. 24: 139156.Google Scholar
Zagwijn, W.H., 1974. The palaeogeographic evolution of The Netherlands during the Quaternary. Geologie en Mijnbouw 53: 369385.Google Scholar
Zagwijn, W.H., 1983. Sea-level changes in the Netherlands during the Eemian. Geologie en Mijnbouw 62: 437450.Google Scholar
Zagwijn, W.H., 1989. The Netherlands during the Tertiary and the Quaternary: A case history of Coastal Lowland evolution. Geologie en Mijnbouw 68: 107120.Google Scholar
Zonneveld, J.I.S., 1958. Litho-stratigrafische eenheden in het Nederlandse Pleistoceen. Mededelingen van de Geologische Stichting N.S. 12: 3164.Google Scholar