Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T12:49:22.606Z Has data issue: false hasContentIssue false

Rock and palaeomagnetic evidence for the Plio-Pleistocene palaeoclimatic change recorded in Upper Rhine Graben sediments (Core Ludwigshafen-Parkinsel)

Published online by Cambridge University Press:  01 April 2016

C. Rolf*
Affiliation:
Leibniz Institute for Applied Geosciences (GGA), Stilleweg 2, 30655 Hannover, Germany.
U. Hambach
Affiliation:
University of Bayreuth, Geosciences, Chair of Geomorphology, 94450 Bayreuth, Germany.
M. Weidenfeller
Affiliation:
Landesamt für Geologie und Bergbau Rheinland-Pfalz, Emy-Roeder-Str. 5, 55129 Mainz, Germany.
*
*Corresponding author. Email: christian.rolf@gga-hannover.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper summarizes results of magnetostratigraphic and rock magnetic investigations performed on fluvial sediments from the Ludwigshafen-Parkinsel drilling project (Upper Rhine Graben (URG) Germany). The drilling penetrated into Pleistocene gravel, sand, silt and clay, and unconsolidated Pliocene deposits. Its primary objective was the exploration of groundwater resources in the area of Ludwigshafen. Our rock magnetic investigations together with results of heavy mineral analyses (see Hagedorn & Boenigk, 2008) show a clearly structured sediment profile. It was possible to identify the change from mainly locally controlled sedimentation from the Graben margins to a more distinct Alpine controlled sedimentation at a depth of 177 m by magnetic data. Based on lithostratigraphic correlation with other sedimentary records from the URG and also based on palynological evidence, this event happened at the end of Late Pliocene during a time of normal polarity of the Earth's magnetic field (Gauss Chron?). The well-documented characteristic change in magneto-mineralogy from goethite to greigite almost at the same stratigraphic level, we interpret solely as a climatic signal which can be correlated with the global climate change at ∼2.5 Ma that is well documented in a wide range of sedimentary environments (e.g. deep-sea sediments, loess).

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2008

References

Aguirre, E. & Pasini, C, 1985. The Pliocene-Pleistocene boundary. Episodes 8 (2): 116120.CrossRefGoogle Scholar
Bartz, J., 1974. Die Mächtigkeit des Quartärs im Oberrheingraben. In: Illies, J. H. & Fuchs, K. (eds): Approaches to Taphrogenesis. Schweizerbart (Stuttgart): 7887.Google Scholar
Becker-Haumann, R.A., 2001. The depositional history of the Bavarian Allgau area at the turn of the Tertiary/Quaternary, Northern Alpine Foreland, Germany - a set of paleogeological maps. Quaternary International 79: 5564.CrossRefGoogle Scholar
Boenigk, W., Von der Brelie, C, Brunnacker, K., Koci, A., Schlickum, W.R. & Strauch, F., 1974. Zur Pliozän-Pleistozän-Grenze im Bereich der Ville (Niederrheinische Bucht). Newsletter Stratigraphy III (4): 219241.CrossRefGoogle Scholar
Boenigk, W. & Frechen, M., 2005. The Pliocene and Quaternary fluvial archives of the Rhine system. Quaternary Science Reviews 25 (5-6): 550574.CrossRefGoogle Scholar
Butler, R.F., 1992. Paleomagnetism: magnetic domains to geological terranes. Blackwell (Boston): 319 pp.Google Scholar
Cande, S.C. & Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research B: Solid Earth 100: 60936095.CrossRefGoogle Scholar
Ellwanger, D., Gabriel, G., Hoselmann, C, Lämmermann-Barthel, J. & Weidenfeller, M., 2005. The Heidelberg Drilling Project (Upper Rhine Graben, Germany). Quatemaire 16, (3): 191199.Google Scholar
Evans, M.E. & Heller, F., 2003. Environmental Magnetism - Principles and Applications of Enviromagnetics. Academic Press (San Diego): 299 pp.Google Scholar
Hagedorn, E.-M., 2004. Sedimentpetrographie und Lithofazies der Jungtertiären und Quartären Sedimente im Oberrheingebiet. Mathematisch-Naturwissen- schaftliche Fakultat, Universität zu Köln, (Köln), 248 pp. http://kups.ub.uni-koeln.de/volltexte/2004/1253/ Google Scholar
Hagedorn, E.-M. & Boenigk, W., 2008. New evidences of the Pliocene and Quaternary sedimentary and fluvial history in the Upper Rhine Graben on basis of heavy mineral analyses. Netherlands Journal of Geosciences 87/1: 2132.CrossRefGoogle Scholar
Han, J., Fyfe, W.S., Longstaffe, F.J., Palmer, H.C., Yan, F.H. & Mai, X.S., 1997. Pliocene-Pleistocene climatic change recorded in fluviolacustrine sediments in central China. Palaeogeography, Palaeoclimatology, Palaeoecology 135: 2739.CrossRefGoogle Scholar
Harland, W.B., Armstrong, R.L., Cox, A.V., Craig, I.E., Smith, A.G. & Smith, D.G., 1990. A geological time scale 1989. Cambridge University Press (Cambridge): 263 pp.Google Scholar
Haug, G.H. & Tiedemann, R., 1998. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393: 673676.CrossRefGoogle Scholar
Heller, F. & Liu, T.-S., 1982. Magnetostratigraphical dating of loess deposits in China. Nature 300: 431433.CrossRefGoogle Scholar
Horng, C.-S. & Roberts, A.P., 2006. Authigenic or detrital origin of pyrrhotite in sediments?: Resolving a paleomagnetic conundrum. Earth and Planetary Science Letters 241, (3-4): 750762.CrossRefGoogle Scholar
Knipping, M., 2004. Pollenanalytische Untersuchungen an einem mittel-pleistozänen Interglazial bei Mannheim. Tübinger Geowissenschaftliche Arbeiten, (Festschrift Bibus) D10: 199217.Google Scholar
Knipping, M., 2008. Early and Middle Pleistocene pollen asssemblages of deep core drillings in the northern Upper Rhine Graben, Germany. Netherlands Journal of Geosciences 87/1: 5165.CrossRefGoogle Scholar
Litt, T., Ellwanger, D., Villinger, E. & Wansa, S., 2002. The Quaternary rocks in the Stratigraphic Table of Germany 2002. Newsletters on Stratigraphy 41 (1-3): 385399. CrossRefGoogle Scholar
Mankinen, E.A. & Daliymple, G.B., 1979. Revised geomagnetic polarity time scale for the Interval 0-5 m.y. B.P. Journal of Geophysical Research 84 (B2): 615626.CrossRefGoogle Scholar
Rochette, P., 1987. Metamorphic control of the magnetic mineralogy of black shales in the Swiss Alps: toward the use of ‘magnetic isogrades'. Earth and Planetary Science Letters 84: 446456.CrossRefGoogle Scholar
Rolf, C, 2000. Das Kryogenmagnetometer im Magnetiklabor Grubenhagen. Geologisches Jahrbuch E52: 161188.Google Scholar
Rowan, C.J. & Roberts, A.P., 2006. Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand. Earth and Planetary Science Letters, 241 (1-2): 118137.CrossRefGoogle Scholar
Shackleton, N.J., Blackman, J., Zimmerman, H., Kent, D.V., Hall, M.A., Roberts, D.G., Schnitker, D., Baldauf, J.G., Desprairies, A., Homrighausen, R., Huddlestun, P., Keene, J.B., Kaltenback, A.J., Krumsiek, K.A.O., Morton, A.C., Murray, J.W. & Westberg, S.J., 1984. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307: 620623.CrossRefGoogle Scholar
Snowball, I.F., 1997. Gyroremanent magnetization and the magnetic properties of greigite-bearing clays in southern Sweden. Geophysical Journal International 129: 624636.CrossRefGoogle Scholar
Snowball, I.F. & Torii, M., 1999. Incidence and significance of magnetic iron sulphides in Quaternary sediments and soils. In: Maher, B.A. & Thompson, R. (eds): Quaternary climates, environments and magnetism. Cambridge University Press (Cambridge): 199230.CrossRefGoogle Scholar
Strattner, M. & Rolf, C, 1995. Magnetostratigraphische Untersuchungen an pleistozänen Deckschichtprofilen im bayerischen Alpenvorland. Geologica Bavanca, 99: 55101.Google Scholar
Suc, J.P., Bertini, A., Leroy, S.A.G. & Suballyova, D., 1997. Towards a lowering of the Pliocene/Pleistocene boundary to the Gauss/Matuyama Reversal. In: Partridge, T.C. (ed.): The Plio-Pleistocene boundary. Quaternary International 40: 3742.Google Scholar
Thompson, R. & Oldfield, F., 1986. Environmental magnetism. AHen and Unwin (London): 227 pp.CrossRefGoogle Scholar
Torii, M., Fukuma, K., Horng, C.-S. & Lee, T.-O., 1996. Magnetic discrimination of pyrrhotite- and greigite-bearing sediment samples. Geophysical Research Letters 23(14): 18131816.CrossRefGoogle Scholar
Van Velzen, A.J. & Zijderveld, J.D.A., 1992. A method to study alterations of magnetic minerals during thermal demagnetization applied to a fine-grained marine marl (Trubi formation, Sicily). Geophys. Journal International 110: 7990.CrossRefGoogle Scholar
Vasiliev, I., 2006. A new chronology for the Dacian Basin (Romania) Consequences for the kinematic and paleoenvironmental evolutuion of the Paratethys region. Geologica Ultraiectina 267: 193 pp, University Utrecht.Google Scholar
Von Dobeneck, T., 1993. Neue Ansätze zur Messung und Interpretation der magnetischen Hysterese von Tiefseesedimenten. Dissertation, Universität München, Verlag M. L. Leidorf (Buch am Erlbach): 190 pp.Google Scholar
Weidenfeller, M. & Kärcher, T., 2008. Tectonic influence on fluvial preservation: Aspects of the architecture of Middle and Late Pleistocene sediments in the northern Upper Rhine Graben, Germany. Netherlands Journal of Geosciences 87/1: 3340.Google Scholar