Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T09:11:42.213Z Has data issue: false hasContentIssue false

A molluscan perspective on hydrological cycle dynamics in northwestern Europe

Published online by Cambridge University Press:  24 March 2014

E.A.A. Versteegh*
Affiliation:
Institute of Earth Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
H.B. Vonhof
Affiliation:
Institute of Earth Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
S.R. Troelstra
Affiliation:
Institute of Earth Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
D. Kroon
Affiliation:
University of Edinburgh, School of GeoSciences, West Mains Road, Edinburgh EH9 3JW, United Kingdom
*
Earth System Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium. Email: emma.versteegh@vub.ac.be

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Shell aragonite δ180 values of unionid freshwater mussels are applied as a proxy for past river discharges in the rivers Rhine and Meuse, using a set of nine shells from selected climatic intervals during the late Holocene. A single Meuse shell derives from the Subboreal and its δ180 values are similar to modern values. The Rhine specimens represent the Subboreal, the Roman Warm Period and the Medieval Warm Period (MWP). These shells also show averages and ranges of aragonite δ180 values similar to modern specimens. This indicates that environmental conditions such as Rhine river dynamics, Alpine meltwater input and drought severity during these intervals were similar to the 20th century. These shells do not record subtle centennial to millennial climatic variation due to their relatively short lifespan and the large inter-annual and intra-seasonal variation in environmental conditions. However, they are very suitable for studying seasonal to decadal scale climate variability. The two shells with the longest lifespan appear to show decadal scale variability in reconstructed water δ180 values during the MWP, possibly forced by the North Atlantic Oscillation (NAO), which is the dominant mode of variability influencing precipitation regimes over Europe.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2010

References

Berendsen, H.J.A. & Stouthamer, E., 2001. Palaeogeographic development of the Rhine-Meuse delta, the Netherlands. Koninklijke Van Gorcum (Assen): 268 pp.Google Scholar
Bradley, R.S., Hughes, M.K. & Diaz, H.F., 2003. Climate Change: Climate in medieval time. Science 302 (5644): 404405.CrossRefGoogle ScholarPubMed
Brázdil, R., Pfister, C., Wanner, H., Storch, H.V. & Luterbacher, J., 2005. Historical climatology in Europe – The state of the art. Climatic Change 70(3): 363430.CrossRefGoogle Scholar
Cook, E.R., Esper, J. & D'Arrigo, R.D., 2004. Extra-tropical Northern Hemisphere land temperature variability over the past 1000 years. Quaternary Science Reviews 23 (20–22): 20632074.Google Scholar
Crowley, T.J. & Lowery, T.S., 2000. How warm was the Medieval Warm Period? Ambio 29(1): 5154.Google Scholar
Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus 16(4): 336368.Google Scholar
Dettman, D.L., Reische, A.K. & Lohmann, K.C., 1999. Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (Unionidae). Geochimica et Cosmochimica Acta 63(7–8): 10491057.CrossRefGoogle Scholar
Dunca, E., Schöne, B.R. & Mutvei, H., 2005. Freshwater bivalves tell of past climates: But how clearly do shells from polluted rivers speak? Palaeogeography, Palaeoclimatology, Palaeoecology 228 (1–2): 4357.CrossRefGoogle Scholar
Dunca, E., Mutvei, H., Göransson, P., Mörth, C.-M., Schöne, B., Whitehouse, M., Elfman, M. & Baden, S., 2009. Using ocean quahog (Arctica islandica) shells to reconstruct palaeoenvironment in Öresund, Kattegat and Skagerrak, Sweden. International Journal of Earth Sciences 98(1): 317.Google Scholar
Erkens, G., 2009. Sediment dynamics in the Rhine catchment – Quantification of fluvial response to climate change and human impact. Ph.D. thesis, Utrecht University (Utrecht): 278 pp.Google Scholar
Esper, J., Cook, E.R. & Schweingruber, F.H., 2002. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295(5563): 22502253.Google Scholar
Frisia, S., Borsato, A., Spötl, C., Villa, I.M. & Cucchi, F., 2005. Climate variability in the SE Alps of Italy over the past 17,000 years reconstructed from a stalagmite record. Boreas 34(4): 445455.Google Scholar
Gajurel, A.P., France-Lanord, C., Huyghe, P., Guilmette, C. & Gurung, D., 2006. C and O isotope compositions of modern fresh-water mollusc shells and river waters from the Himalaya and Ganga plain. Chemical Geology 233(1–2): 156183.Google Scholar
Gittenberger, E., Janssen, A.W., Kuijper, W.J., Kuiper, J.G.J., Meijer, T., Van der Velde, G. & De Vries, J.N., 1998. De Nederlandse zoetwatermollusken – Recente en fossiele weekdieren uit zoet en brak water. Nationaal Natuurhistorisch Museum Naturalis – KNNV Uitgeverij (Leiden): 288 pp.Google Scholar
Goewert, A., Surge, D., Carpenter, S.J. & Downing, J., 2007. Oxygen and carbon isotope ratios of Lampsilis cardium (Unionidae) from two streams in agricultural watersheds of Iowa, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 252(3–4): 637648.CrossRefGoogle Scholar
Goodwin, D.H., Schöne, B.R. & Dettman, D.L., 2003. Resolution and fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk shells: models and observations. Palaios 18(2): 110125.Google Scholar
Goosse, H., Renssen, H., Timmermann, A. & Bradley, R.S., 2005. Internal and forced climate variability during the last millennium: a model-data comparison using ensemble simulations. Quaternary Science Reviews 24(12–13): 13451360.CrossRefGoogle Scholar
Goosse, H., Arzel, O., Luterbacher, J., Mann, M.E., Renssen, H., Riedwyl, N., Timmermann, A., Xoplaki, E. & Wanner, H., 2006. The origin of the European ‘Medieval Warm Period’. Climate of the Past 2(2): 99113.Google Scholar
Grossman, E.L., & Ku, T.-L., 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects. Chemical Geology: Isotope Geoscience section 59: 5974.CrossRefGoogle Scholar
Guiot, J., Nicault, A., Rathgeber, C., Edouard, J.L., Guibal, F., Pichard, G., & Till, C., 2005. Last-millennium summer-temperature variations in western Europe based on proxy data. The Holocene 15(4): 489500.Google Scholar
Hanninen, J., Vuorinen, I. & Hjelt, P., 2000. Climatic factors in the Atlantic control the oceanographic and ecological changes in the Baltic Sea. Limnology and Oceanography 45(3): 703710.Google Scholar
Hass, H.C., 1996. Northern Europe climate variations during late Holocene: evidence from marine Skagerrak. Palaeogeography, Palaeoclimatology, Palaeoecology 123(1–4): 121145.Google Scholar
Holzhauser, H., Magny, M. & Zumbuuhl, H.J., 2005. Glacier and lake-level variations in west-central Europe over the last 3500 years. The Holocene 15(6): 789801.CrossRefGoogle Scholar
Hurrell, J.W., 1995. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 269(5224): 676679.Google Scholar
Hurrell, J.W., Kushnir, Y., Ottersen, G. & Visbeck, M., 2003. An overview of the North Atlantic Oscillation: The North Atlantic Oscillation: Climatic significance and environmental impact. American Geophysical Union: 135.Google Scholar
Joordens, J.C.A., Wesselingh, F.P., De Vos, J., Vonhof, H.B., Kroon, D., 2009. Relevance of aquatic environments for hominins: a case study from Trinil (Java, Indonesia). Journal of Human Evolution 57(6): 656671.Google Scholar
Kaandorp, R.J.G., Vonhof, H.B., Del Busto, C., Wesselingh, F.P., Ganssen, G.M., Marmol, A.E., Romero Pittman, L., & Van Hinte, J.E., 2003. Seasonal stable isotope variations of the modern Amazonian freshwater bivalve Anodontites trapesialis. Palaeogeography, Palaeoclimatology, Palaeoecology 194(4): 339354.Google Scholar
Kaandorp, R.J.G., Vonhof, H.B., Wesselingh, F.P., Pittman, L.R., Kroon, D. & Van Hinte, J.E., 2005. Seasonal Amazonian rainfall variation in the Miocene Climate Optimum. Palaeogeography, Palaeoclimatology, Palaeoecology 221(1–2): 16.CrossRefGoogle Scholar
Kiely, G., 1999. Climate change in Ireland from precipitation and streamflow observations. Advances in Water Resources 23(2): 141151.CrossRefGoogle Scholar
Kuijper, W.J., 1990. De mollusken van de holocene fluviatiele afzettingen bij Hekelingen (Spijkenisse, Zuid-Holland). Basteria 54: 316.Google Scholar
Lamb, H.H., 1965. The early medieval warm epoch and its sequel. Palaeogeography, Palaeoclimatology, Palaeoecology 1: 1337.Google Scholar
Luterbacher, J., Rickli, R., Xoplaki, E., Tinguely, C., Beck, C., Pfister, C. & Wanner, H., 2001. The late Maunder Minimum (1675-1715) – A key period for studying decadal scale climatic change in Europe. Climatic Change 49(4): 441462.Google Scholar
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H., 2004. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303(5663): 14991503.Google Scholar
Magny, M., 2004. Holocene climate variability as reflected by mid-European lakelevel fluctuations and its probable impact on prehistoric human settlements. Quaternary International 113(1): 6579.Google Scholar
Mann, M.E., Bradley, R.S. & Hughes, M.K., 1998. Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392(6678): 779787.CrossRefGoogle Scholar
Mann, M.E., Bradley, R.S., & Hughes, M.K., 1999. Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations. Geophysical Research Letters 26(6): 759762.Google Scholar
Mook, W.G., 2000. Introduction, theory, methods and reviews. I.A.E.A.: 280 pp.Google Scholar
Oudhof, J.W.M., Dijkstra, J., & Verhoeven, A.A.A., 2000. ‘Huis Malburg’ van spoor tot spoor – Een middeleeuwse nederzetting in Kerk-Avezaath. NS Railinfrabeheer B.V. (Utrecht): 368 pp.Google Scholar
Parmalee, P.W. & Klippel, W.E., 1974. Freshwater mussels as a prehistoric food resource. American Antiquity 39(3): 421434.CrossRefGoogle Scholar
Peacock, E. & James, T.R., 2002. A prehistoric unionid assemblage from the Big Black River drainage in Hinds County, Mississippi. Journal of the Mississippi Academy of Sciences 47(2): 121125.Google Scholar
Plug, I. & Pistorius, J.C.C., 1999. Animal remains from industrial Iron Age communities in Phalaborwa, South Africa. African Archaeological Review 16(3): 155184.Google Scholar
Ricken, W., Steuber, T., Freitag, H., Hirschfeld, M. & Niedenzu, B., 2003. Recent and historical discharge of a large European river system – oxygen isotopic composition of river water and skeletal aragonite of Unionidae in the Rhine. Palaeogeography, Palaeoclimatology, Palaeoecology 193(1): 7386.Google Scholar
Rodrigues, D., Abell, P.I. & Kröpelin, S., 2000. Seasonality in the early Holocene climate of Northwest Sudan: interpretation of Etheria elliptica shell isotopic data. Global and Planetary Change 26(1–3): 181187.Google Scholar
Russell-Smith, J., Lucas, D., Gapindi, M., Gunbunuka, B., Kapirigi, N., Namingum, G., Lucas, K., Giuliani, P. & Chaloupka, G., 1997. Aboriginal resource utilization and fire management practice in Western Arnhem Land, monsoonal Northern Australia: Notes for prehistory, lessons for the future. Human Ecology 25(2): 159195.Google Scholar
Schöne, B.R., Freyre Castro, A.D., Fiebig, J., Houk, S.D., Oschmann, W. & Kroncke, I., 2004. Sea surface water temperatures over the period 1884-1983 reconstructed from oxygen isotope ratios of a bivalve mollusk shell (Arctica islandica, southern North Sea). Palaeogeography, Palaeoclimatology, Palaeoecology 212(3–4): 215232.Google Scholar
Schöne, B.R., Fiebig, J., Pfeiffer, M., Gle, R., Hickson, J., Johnson, A.L.A., Dreyer, W. & Oschmann, W., 2005a. Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland). Palaeogeography, Palaeoclimatology, Palaeoecology 228(1–2): 130148.Google Scholar
Schöne, B.R., Pfeiffer, M., Pohlmann, T. & Siegismund, F., 2005b. A seasonally resolved bottom-water temperature record for the period AD 1866-2002 based on shells of Arctica islandica (Mollusca, North Sea). International Journal of Climatology 25(7): 947962.Google Scholar
Schöne, B.R., Page, N., Rodland, D., Fiebig, J., Baier, S., Helama, S. & Oschmann, W., 2007. ENSO-coupled precipitation records (1959-2004) based on shells of freshwater bivalve mollusks (Margaritifera falcata) from British Columbia. International Journal of Earth Sciences 96(3): 525540.CrossRefGoogle Scholar
Straile, D., Livingstone, D.M., Weyhenmeyer, G.A. & George, D.G., 2003. The response of freshwater ecosystems to climate variability associated with the North Atlantic Oscillation: The North Atlantic Oscillation: Climatic significance and environmental impact. American Geophysical Union: 263279.Google Scholar
Tudorancea, C., 1972. Studies on Unionidae populations from the Crapina-Jijila complex of pools (Danube zone liable to inundation). Hydrobiologia 39(4): 527561.Google Scholar
Van der Kamp, J.S., 2007. Vroege wacht – LR31 Zandweg: archeologisch onderzoek van twee eerste-eeuwse houten wachttorens in Leidsche Rijn. Sectie Cultuurhistorie gemeente Utrecht.Google Scholar
Van Geel, B., Buurman, J. & Waterbolk, H.T., 1996. Archaeological and palaeoecological indications of an abrupt climate change in the Netherlands, and evidence for climatological teleconnections around 2650 BP. Journal of Quaternary Science 11(6): 451460.Google Scholar
Verdegaal, S., Troelstra, S.R., Beets, C.K.J. & Vonhof, H.B., 2005. Stable isotopic records in unionid shells as a paleoenvironmental tool. Netherlands Journal of Geosciences – Geologie en Mijnbouw 84(4): 403408.Google Scholar
Versteegh, E.A.A., 2009. Silent witnesses – Freshwater bivalves as archives of environmental variability in the Rhine-Meuse delta. Ph.D. thesis, VU University (Amsterdam): 208 pp.Google Scholar
Versteegh, E.A.A., Troelstra, S.R., Vonhof, H.B. & Kroon, D., 2009. Oxygen isotopic composition of bivalve seasonal growth increments and ambient water in the rivers Rhine and Meuse. Palaios 24(8): 497504.Google Scholar
Versteegh, E.A.A., Vonhof, H.B., Troelstra, S.R. & Kroon, D., 2010. Can shells of freshwater mussels (Unionidae) be used to estimate low summer discharge of rivers and associated droughts? International Journal of Earth Sciences: published online.Google Scholar
Wanamaker, A., Kreutz, K., Schöne, B., Maasch, K., Pershing, A., Borns, H., Introne, D. & Feindel, S., 2009. A late Holocene paleo-productivity record in the western Gulf of Maine, USA, inferred from growth histories of the long-lived ocean quahog (Arctica islandica). International Journal of Earth Sciences 98(1): 1929.Google Scholar
Ward, P.J., Renssen, H., Aerts, J.C.J.H., Van Balen, R.T. & Vandenberghe, J., 2008. Strong increases in flood frequency and discharge of the River Meuse over the late Holocene: impacts of long-term anthropogenic land use change and climate variability. Hydrology and Earth System Sciences 12(1): 159175.CrossRefGoogle Scholar
Wu, H., Guiot, J., Brewer, S. & Guo, Z., 2007. Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modelling. Climate Dynamics 29(2): 211229.Google Scholar