Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T22:22:08.721Z Has data issue: false hasContentIssue false

Long-term river terrace sequences: Evidence for global increases in surface uplift rates in the Late Pliocene and early Middle Pleistocene caused by flow in the lower continental crust induced by surface processes

Published online by Cambridge University Press:  01 April 2016

R. Westaway*
Affiliation:
16 Neville Square, Durham DH1 3PY, England.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Long-term river terrace sequences reveal that many regions have uplifted by several hundred metres since the Middle Pliocene. They indeed provide evidence of a global increase in uplift rates in die Late Pliocene, followed by a calm period then a renewed increase around the Early-Middle Pleistocene boundary. It is suggested that this uplift pattern has resulted from thickening of the continental crust caused by flow in the lower crust which has been induced by cyclic surface loading caused by growth and decay of ice sheets and the associated global sea-level fluctuations. Observed uplift histories are modelled using a technique which incorporates increases in the strength of forcing of this process caused by step changes in the intensity of glaciations starting at~3.1,~2.5,~1.2, and~0.9 Ma.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2002

References

Ahnert, F., 1970. Functional relationships between denudation, relief, and uplift in large mid-latitude drainage basins. American Journal of Science 268: 243263.Google Scholar
Antoine, P., 1994. The Somme valley terrace system (northern France); A model of river response to Quaternary climatic variations since 800,000 B.P. Terra Nova 6: 453464.Google Scholar
Antoine, P., Lautridou, J.-P., Sommé, J., Auguste, P., Auffret, J.-P., Baize, S., Clet-Pellerin, M., Coutard, J.P., Dewolf, Y., Dugué, O., Joly, F., Laignel, B., Laurent, M., Lavollé, M., Lebret, P., Lécolle, F., Lefebvre, D., Limondin-Lozouet, N., Munaut, A.V., Ozouf, J.C., Quesnel, F. & Rousseau, D.-D., 1998. The Quaternary formations of north-west France: boundaries and correlations. Quaternaire 9: 227241 (in French with English abstract).CrossRefGoogle Scholar
Arger, J., Mitchell, J. & Westaway, R., 2000. Neogene and Quaternary volcanism of south-eastern Turkey. In: Bozkurt, E.J.A. Winchester, J.A. & Piper, J.D.A. (eds) : Tectonics and Magmatism of Turkey and the Surrounding Area. Geological Society of London Special Publication 173: 459487.Google Scholar
Atwater, T. 1987. Plate tectonic history of the northeast Pacific and western North America. In: Winterer, E.X., Hussong, D.M. & Decker, R.W. (eds): The Eastern Pacific Ocean and Hawaii. The Geology of North America, vol. N. Geological Society of America (Boulder, Colorado): 2172.Google Scholar
Bates, M.R., 1993. Quaternary aminostratigraphy in northwestern France. Quaternary Science Reviews 12: 793809.Google Scholar
Bibus, E. & Semmel, A., 1977. Über die Auswirkung quartärer Tektonik auf die altpleistozänen Mittelrhein Terrassen. Catena 4: 385408.Google Scholar
Bond, G., 1978. Evidence for Late Tertiary uplift of Africa relative to North America, South America, Australia and Europe. Journal of Geology 86: 4765.Google Scholar
Bridgland, D.R., 1994. The Quaternary of the Thames. Nature Conservancy Council (London) : 441 pp.Google Scholar
Bridgland, D.R., 1995. The Quaternary sequence of the eastern Thames basin: Problems of correlation. In: Bridgland, D.R., Allen, P. & Haggart, B.A. (eds): The Quaternary of the Lower Reaches of the Thames, Field Guide. Quaternary Research Association (Durham, England): 3552.Google Scholar
Bridgland, D.R. & Allen, P., 1996. A revised model for terrace formation and its significance for the early Middle Pleistocene terrace aggradations of north-east Essex, England. In: Turner, C. (ed.): The early Middle Pleistocene in Europe. Balkema (Rotterdam): 121134.Google Scholar
Bridgland, D.R. & Maddy, D., 2002. Global correlation of long Quaternary fluvial sequences. Netherlands Journal of Geo-sciences, this volume.Google Scholar
Brunnacker, K., Farrokh, F. & Sidiropoulos, D., 1982a. Die altquatären Terrassen östlich der Niederrheinischen Bucht. Zeitschrift für Geomorphologie, Neue Folge, Supplement 42: 215226 (in German with English summary).Google Scholar
Brunnacker, K., Löscher, M., Tillmanns, W. & Urban, B., 1982b. Correlation of the Quaternary terrace sequence in the Lower Rhine valley and northern Alpine foothills of Central Europe. Quaternary Research 18: 152173.Google Scholar
Damon, P.E., 1971. The relationship between Late Cenozoic volcanism and tectonism and orogenic-epeiorogenic periodicity. In: Turekian, K.E. (ed.): The Late Cenozoic Glacial Ages. Yale University Press (New Haven, Connecticut): 1535.Google Scholar
De Sitter, L.U., 1952. Pliocene uplift of Tertiary mountain chains. American Journal of Science 250: 297307.Google Scholar
Du Toit, A.L., 1933. Crustal movement as a factor in the geographical evolution of South Africa. South African Geographical Journal 16: 320.Google Scholar
Emery, K.O., 1958. Shallow submerged marine terraces of southern California. Geological Society of America Bulletin 69: 3960.Google Scholar
England, P., 1993. Convective removal of thermal boundary layer of thickened continental lithosphere: a brief summary of causes and consequences with special reference to the Cenozoic tectonics of the Tibetan Plateau and surrounding regions. Tectono-physics 223: 6773.Google Scholar
Eyles, N., 1996. Passive margin uplift around the North Atlantic region and its role in northern hemisphere late Cenozoic glaciation. Geology 24: 103106.Google Scholar
Fielding, E., Isacks, B., Barazangi, M. & Duncan, C. 1994. How flat is Tibet? Geology 22: 163167.Google Scholar
Flint, R.F., 1957. Glacial and Pleistocene Geology. John Wiley & Sons (London, England): 553 pp.Google Scholar
Gallois, R.W. 1965. British Regional Geology, The Wealden District, 4th edition. Her Majesty’s Stationary Office (London, England): 101 pp.Google Scholar
Gilchrist, A.R., Summerfield, M.A. & Cockburn, H.A.P., 1994. Landscape dissection, isostatic uplift, and the morphologic development of orogens. Geology 22: 963966.Google Scholar
Gorsline, D.S. & Teng, L.S.-Y., 1987. The California Continental Borderland. In: Winterer, E.L., Hussong, D.M. & Decker, R.W. (eds) : The Eastern Pacific Ocean and Hawaii, The Geology of North America, vol. N. Geological Society of America, (Boulder, Colorado): 471487.Google Scholar
Hamilton, W.J. & Strickland, H.E., 1841. On the geology of the western part of Asia Minor. Transactions of the Geological Society of London 6: 139.Google Scholar
Hilgen, F.J. 1991. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implications for the Geomagnetic Polarity Time Scale. Earth and Planetary Science Letters 104: 226244.Google Scholar
Holmes, A., 1965. Principles of Physical Geology, 2nd edition. Nelson (London, England): 1288 pp.Google Scholar
lilies, J.H., Prodehl, C. Schminke, H.-U. & Semmel, A., 1979. The Quaternary uplift of the Rhenish Shield in Germany. Tectonophysics 1: 197225.Google Scholar
Kaufman, P.S. & Royden, L.H., 1994. Lower crustal flow in an extensional setting: Constraints from the Halloran Hills region, eastern Mojave Desert, California. Journal of Geophysical Research 99: 1572315739.Google Scholar
Kiden, P. & Törnqvist, T.E., 1998. Can river terrace flights be used to quantify Quaternary tectonic uplift rates? Journal of Quaternary Science 13: 573574.Google Scholar
King, L.C., 1955. Pediplanation and isostacy: An example from South Africa. Quarterly Journal of the Geological Society of London 111:353359.Google Scholar
Klein, A., Jacoby, W. & Smilde, P., 1997. Mining-induced crustal deformation in northwest Germany: modelling the rheological structure of the lithosphere. Earth and Planetary Science Letters 147: 107123.Google Scholar
Kusznir, N.J. & Park, R.G., 1984. Continental lithosphre strength: the critical role of lower crustal deformation. In: Dawson, J.B., Carswell, D.A. & Wedepohl, K.H. (eds): The Nature of the Lower Continental Crust. Geological Society of London Special Publication 24: 7993.CrossRefGoogle Scholar
Kuzcuoglu, C. 1996. River response to Quaternary tectonics with examples from northwestern Anatolia. In: Lewin, J. (ed.): Mediterranean Quaternary River Environments. Balkema (Rotterdam): 4553.Google Scholar
Larson, K.M., 1993. Application of the Global Positioning System to crustal deformation measurements 3. Result from the southern California borderlands. Journal of Geophysical Research 98: 21,71321,726.Google Scholar
Lautridou, J.-P., Auffret, J.-P., Baltzer, A., Clet, M., Lécolle, F., Lefebvre, D., Lericolais, G., Roblin-Jouve, A., Balescu, S., Carpentier, G., Descombes, J.-C., Occhietti, S. & Rousseau, D.-D., 1999. The river Seine, the river Manche. Bulletin de la Société Géologique de France 170: 545558 (in French with English summary).Google Scholar
Lawson, A.C., 1893. The post-Pliocene diastrophism of the coast of southern California. University of California Publications, Bulletin of the Department of Geology 1: 115160.Google Scholar
Legg, M.R., 1991. Developments in understanding the tectonic evolution of the California Continental Borderland. In: From Shoreline to Abyss. Society of Economic Paleontologists and Mineralogists Special Publication 46: 291312.Google Scholar
Li, Jujun, 1991. The environmental effects of the uplift of the Qinghai-Xizang plateau. Quaternary Science Reviews 10: 479483.Google Scholar
Li, Jujun, Fang, Xiaomin, Van der Voo, R., Zhu, Junjie, MacNiocaill, C., Ono, Y., Pan, Baotian, Zhong, Wei, Wang, Jianli, Sasaki, T., Zhang, Yutian, Cao, Jixiu, Kang, Shichuang & Wang, Jianming, 1997a. Magnetostratigraphic dating of river terraces: Rapid and intermittent incision by the Yellow River of the northeastern margin of the Tibetan Plateau during the Quaternary. Journal of Geophysical Research 102: 1012110132.Google Scholar
Li, Jujun, Fang, Xiaomin, Van der Voo, R., Zhu, Junjie, MacNiocaill, C., Cao, Jixiu, Zhong, Wei, Chen, Huailu, Wang, Jianli, Wang, Jianming & Zhang, Yiechun, 1997b. Late Cenozoic magnetostratigraphy (11-0 Ma) of the Dongshanding andWangjiashan sections in the Longzhong Basin, western China. Geologie en Mijnbouw 86: 121134.Google Scholar
Lithgow-Bertelloni, C. & Silver, P.G., 1998. Dynamic topography, plate driving forces, and the African superswell. Nature 395: 269272.Google Scholar
Lucchitta, I., 1979. Late Cenozoic uplift of the southwestern Colorado Plateau and adjacent lower Colorado River region. Tectonophysics 61: 6395.Google Scholar
Lüttig, G. & Meyer, K.-D., 1975. Geological history of the River Elbe, mainly of its lower course. In: Macar, P. (ed.): L’évolution quaternaire des bassins fluviaux de la mer du nord méridionale. Centenaire de la Société géologique de Belgique (Liège, Belgium): 119.Google Scholar
Ma, Xingyuan, Deng, Qidong, Wang, Yipeng & Liu, Hefu, 1982. Cenozoic graben systems in north China. Zeitschrift für Geomorphologie, Neue Folge, Supplement 42: 99116.Google Scholar
Maddy, D., 1997. Uplift-driven valley incision and river terrace formation in southern England. Journal of Quaternary Science 12: 539545.Google Scholar
Maddy, D., 1998. Reply: Can river terrace flights be used to quantify Quaternary tectonic uplift rates? Journal of Quaternary Science 13:574575.Google Scholar
Maddy, D. & Bridgland, D.R., 2000. Accelerated uplift resulting from Anglian glacioisostatic rebound in the Middle Thames valley, UK?: Evidence from the river terrace record. Quaternary Science Reviews 19: 15811588.Google Scholar
Maddy, D., Bridgland, D.R. & Green, C.P., 2000. Crustal uplift in southern England: Evidence from the river terrace records. Geomorphology 33: 167181.CrossRefGoogle Scholar
Maddy, D., Bridgland, D.R. & Westaway, R., 2001. Uplift-driven valley incision and climate-controlled river terrace development in the Thames valley, UK. Quaternary International 79: 2336.Google Scholar
McKee, E.D. & McKee, E.H., 1972. Pliocene uplift of the Grand Canyon region -Time of drainage adjustment. Geological Society of America Bulletin 83: 19231932.Google Scholar
McKenzie, D., 1984. A possible mechanism for epeirogenic uplift. Nature 307: 616618.Google Scholar
McQuarrie, N. & Chase, C. 2000. Raising the Colorado Plateau. Geology 28: 9194.Google Scholar
Milliman, J.D. & Syvitski, J.P.M., 1992. Geomorphic / tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. Journal of Geology 100: 525544.CrossRefGoogle Scholar
Mitchell, J. & Westaway, R., 1999. Chronology of Neogene and Quaternary uplift and magmatism in the Caucasus: Constraints from K-Ar dating of volcanism in Armenia. Tectonophysics 304: 157186.Google Scholar
Moffat, A.J. & Can, J.A., 1986. A re-examination of the evidence for a Plio-Pleistocene marine transgression on the Chiltern Hills, III. Deposits. Earth Surface Processes and Landforms 11: 233247.Google Scholar
Molnar, P. & England, P., 1990. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg. Nature 346: 2934.Google Scholar
Molnar, P., England, P. & Martinod, J., 1993. Mantle dynamics, uplift of the Tibetan plateau, and the Indian monsoon. Reviews of Geophysics 31: 357396.Google Scholar
Morzadec-Kerfourn, M.T., 1997. Dinoflagellate cysts and the palaeoenvironment of Late-Pliocene Early-Pleistocene deposits of Brittany, north-west France. Quaternary Science Reviews 16: 883898.Google Scholar
Muhs, D.R., 1983. Quaternary sea-level events on northern San Clemente island, California. Quaternary Research 20: 322341.Google Scholar
Muhs, D.R., 1985. Amino acid age estimates of marine terraces and sea levels on San Nicolas Island, California. Geology 13: 5861.Google Scholar
Muhs, D.R. & Szabo, B.J., 1982. Uranium-series age of the Eel Point terrace, San Clemente island, California. Geology 10: 2326.Google Scholar
Muhs, D.R., Kennedy, G.L. & Rockwell, T.K., 1994. Uranium-series ages of marine terrace corals from the Pacific coast of North America and implications for last-interglacial sea level history. Quaternary Research 42: 7287.CrossRefGoogle Scholar
Mudelsee, M. & Schulz, M., 1997. The Mid-Pleistocene climate transition: onset of 100 ka cycle lags ice volume build-up by 280 ka. Earth and Planetary Science Letters 151: 117123.Google Scholar
Murray-Wallace, C.V., Belperio, A.P., Cann, J.H., Huntley, D.J. & Prescott, J.R., 1996. Late Quaternary uplift history, Mount Gambier region, South Australia. Zeitschrift für Geomorphologie, Neue Folge, Supplement 106: 4156.Google Scholar
Olmsted, E.H., 1958. Geologie reconnaissance of San Clemente Island, California. U.S. Geological Survey Bulletin 1071-B: 168.Google Scholar
Ozaner, F.S., 1992. Detecting the polycyclic drainage evolution in Kula region (western Turkey) using aerial photographs. ITC Journal 1992-3: 249253.Google Scholar
Partridge, T.C., 1998. Of diamonds, dinosaurs and diastrophism: 150 million years of landscape evolution in southern Africa. South African Journal of Geology 101: 167184.Google Scholar
Partridge, T.C. & Maud, R.R., 1987. Geomorphic evolution of southern Africa since the Mesozoic. South African Journal of Geology 90: 179208.Google Scholar
Pirazzoli, P.A., Radtke, U., Hantoro, W.S.C., Jouannic, C. Hoang, C.T., Causse, C. & Borei Best, M., 1991. Quaternary raised coral-reef terraces on Sumba Island, Indonesia. Science 252: 18341836.Google Scholar
Präger, F., 1966. Zur Kenntnis der rezenten Tektonik im Gebiet östlich von Pirna auf der Grundlage pleistozängeologischer Untersuchungen. Geologie (Berlin) 15: 7996.Google Scholar
Quitzow, H.W. & Thome, K.N., 1975. Les terrasses du Rhin de Sinzig et Cologne. Pleistocene ancien de la cuvette de l’Erft. In: Macar, P. (ed.): L’évolution quaternaire des bassins fluviaux de la mer du nord méridionale. Centenaire de la Société géologique de Belgique (Liège, Belgium): 308318.Google Scholar
Richardson-Bunbury, J.M., 1996. The Kula volcanic field, western Turkey: the development of a Holocene alkali basalt province and the adjacent normal-faulting graben. Geological Magazine 133:275283.Google Scholar
Rose, J., Whiteman, C.A., Allen, P. & Kemp, R.A., 1999. The Kesgrave Sands and Gravels: ‘pre-glacial’ Quaternary deposits of the River Thames in East Anglia and the Thames valley, Proceedings of the Geologists’Association 110: 93116.Google Scholar
Ruddiman, W.F. & Raymo, M.E., 1988. Northern hemisphere climate régimes during the past 3 Ma: Possible tectonic connections. Philosophical Transactions of the Royal Society of London, Series B 318: 411430.Google Scholar
Schumm, S.A., Dumont, J.F. & Holbrook, J.M., 2000. Active tectonics and Alluvial Rivers. Cambridge University Press (Cambridge, England): 290 pp.Google Scholar
Schwalbach, J.R. & Gorsline, D.S., 1985. Holocene sediment budgets for the basins of the California continental borderland. Journal of Sedimentary Petrology 55: 829842.Google Scholar
Semmel, A., 1991. Neotectonics and geomorphology in the Rhenish massif and the Hessian basin. Tectonophysics 195: 291297.Google Scholar
Shackleton, N.J., Berger, A. & Peltier, W.R., 1990. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP site 677. Transactions of the Royal Society of Edinburgh, Earth Sciences 81: 251261.Google Scholar
Shackleton, R.M. & Chang, Chengfa, 1988. Cenozoic uplift and deformation of the Tibetan Plateau: the geomorphological evidence, Philosophical Transactions of the Royal Society of London, Series A 327: 365377.Google Scholar
Sibson, R.H., 1982. Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States. Bulletin of the Seismological Society of America 72: 1 Silos.Google Scholar
Smith, W.S.T., 1898. A geological sketch of San Clemente island, U.S. Geological Survey 18th Annual Report, part 2: 459496.Google Scholar
Smith, W.S.T., 1900. A topographic study of the islands of southern California, University of California Publications, Bulletin of the Department of Geology 2: 179230.Google Scholar
ten Brink, U.S., Jie, Zhang, Brocher, T.M., Okaya, D.A., Klitgord, K.D. & Fuis, G., 2000. Geophysical evidence for the evolution of the California Inner Borderland as a metamorphic core complex. Journal of Geophysical Research 105: 58355857.Google Scholar
Tyracek, J., 1987. Terraces of the Euphrates River. Sbornik Geologickych Ved Anthropozoikum 18: 185202.Google Scholar
Tyracek, J., 1995. Stratigraphy of me Ohre River terraces in the Most Basin. Sbornik geologickych Ved. Anthropozoikum 22: 141157.Google Scholar
Valentine, J.W. & Veeh, H.H., 1969. Radiometrie ages of Pleistocene terraces from San Nicolas Island, California. Geological Society of America Bulletin 80, 14151418.Google Scholar
Van den Berg, M.W., 1996. Fluvial sequences of the Maas: a 10 Ma record of neotectonics and climate change at various time-scales. Ph.D. Thesis, University of Wageningen, The Netherlands.Google Scholar
Van den Berg, M.W. & Van Hoof, T. 2001. The Maas terrace sequence at Maastricht, SE Netherlands: evidence for 200 m of late Neogene and Quaternary surface uplift. In: Maddy, D., Macklin, M.G. & Woodward, J.C. (eds), River Basin Sediment Systems: Archives of Environmental Change. Balkema (Abingdon, England): 4586.Google Scholar
Vedder, J.G. & Norris, R.M., 1963. Geology of San Nicolas island, California. U.S. Geological Survey Professional Paper 369: 65 pp.Google Scholar
Veeh, H.H., 1966. Th230 / TJ238 and TJ234 / U238 ages of Pleistocene high sea level stand. Journal of Geophysical Research 71 : 33793386.Google Scholar
Veldkamp, A., 1992. A 3-D model of Quaternary terrace development, simulations of terrace stratigraphy and valley asymmetry: A case study for the Allier terraces (Limagne, France). Earth Surface Processes and Landforms 17: 487500.Google Scholar
Veldkamp, A., 1996. Late Cenozoic landform development in East Africa: The role of near base level planation within the dynamic etchplanation concept. Zeitschrift für Geomorphologie, Neue Folge, Supplement 106: 2540.Google Scholar
Veldkamp, A. & Vermeulen, S.E.J.W., 1989. River terrace formation, modelling, and 3-D graphical simulation. Earth Surface Processes and Landforms 14: 641654.Google Scholar
Ward, S.N. & Valensise, G., 1996. Progressive growth of San Clemente Island, California, by blind thrust faulting: Implications for fault slip partitioning in the California Continental Borderland. Geophysical Journal International 126: 712734.Google Scholar
Wehmiller, J.F., Lajoie, K.R., Kvenvolden, K.A., Peterson, E., Belknap, D.F., Kennedy, G.L., Addicott, W.O., Vedder, J.G. & Wright, R.W., 1977. Correlation and chronology of Pacific coast marine terrace deposits of continental United States by fossil amino acid stereochemistry: Technique evaluation, relative ages, kinetic model ages, and geologic implications. U.S. Geological Survey Open-File Report 77-680: 196 pp.Google Scholar
Westaway, R., 1993a. Neogene evolution of the Denizli region of western Turkey. Journal of Structural Geology 15: 3753.Google Scholar
Westaway, R., 1993b. Quaternary uplift of southern Italy. Journal of Geophysical Research 98: 2174121772.Google Scholar
Westaway, R., 1994. Evidence for dynamic coupling of surface processes with isostatic compensation in the lower crust during active extension of western Turkey. Journal of Geophysical Research 99: 2020320223.Google Scholar
Westaway, R., 1995. Crustal volume balance during the India-Eurasia collision and altitude of the Tibetan plateau: a working hypothesis. Journal of Geophysical Research 100: 1517315194.Google Scholar
Westaway, R., 1996. Quaternary elevation change in the Gulf of Corinth of central Greece. Philosophical Transactions of the Royal Society of London, Series A 354: 11251164.Google Scholar
Westaway, R., 1998. Dependence of active normal fault dips on lower-crustal flow regimes. Journal of the Geological Society of London 155: 233253.Google Scholar
Westaway, R., 2001. Flow in the lower continental crust as a mechanism for the Quaternary uplift of the Rhenish Massif, northwest Europe. In: Maddy, D., Macklin, M.G. & Woodward, J.C. (eds), River Basin Sediment Systems: Archives of Environmental Change. Balkema (Abingdon, England): 87167.Google Scholar
Westaway, R., 2002a. Geomorphological consequences of weak lower continental crust, and its significance for river valley evolution. Netherlands Journal of Geosciences, this volume.Google Scholar
Westaway, R., 2002b. The Quaternary evolution of the Gulf of Corinth, central Greece: coupling between surface processes and flow in the lower continental crust. Tectonophysics, 348: 269318.Google Scholar
Westaway, R., $$Maddy & D., , Bridgland, D.R., 2002. Flow in the lower continental crust as a mechanism for the Quaternary uplift of southeast England: constraints from the Thames terrace record. Quaternary Science Reviews, 21: 559603.Google Scholar
Whipple, K.X., Kirby, E. & Brocklehurst, S.H., 1999. Geomorphic limits to climate-induced increases in topographic relief. Nature 401:3943.Google Scholar
White, R.S. & McKenzie, D., 1995. Mantle plumes and flood basalts. Journal of Geophysical Research 100: 17,54317,585.CrossRefGoogle Scholar
Worssam, B.C., 1963. Geology of the country around Maidstone: Memoir for 1:50,000 scale geological map sheet 288 (England and Wales). Her Majesty’s Stationery Office (London, England): 152 pp.Google Scholar
Yang, Zunyi, 1986. The Cainozoic. In: Yang, Zunyi, Cheng, Yuqi & Wang, Hongzhen (eds) : The Geology of China. Clarendon Press (Oxford, England) : 168185.Google Scholar
Zaruba, Q., Bucha, V. & Lozek, V., 1977. Significance of the Vltava terrace system for Quaternary chronostratigraphy, Rozpravy Ceskoslovenske Akademie Ved, Rada Matematickych a Prirodnich Ved 87 (4): 189.Google Scholar
Zhang, Peizhen, Molnar, P. & Downs, W.B., 2001. Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature 410: 891897.Google Scholar