Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T09:11:43.007Z Has data issue: false hasContentIssue false

Heavy-metal pollution of the river Rhine and Meuse floodplains in the Netherlands

Published online by Cambridge University Press:  01 April 2016

H. Middelkoop*
Affiliation:
Centre for Geo-ecological Research - ICG, Utrecht University, Department of Physical Geography, P.O. Box 80.115, 3508 TC UTRECHT, the Netherlands; e-mail: h.middelkoop@geog.uu.nl

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The embanked floodplains of the lower Rhine river in the Netherlands contain large amounts of heavy metals, which is a result of many years of deposition of contaminated overbank sediments. The metal pollution varies greatly between the various floodplain sections as well as in vertical direction within the floodplain soil profiles. The present contribution describes the key processes producing the spatial variability of the metal pollution in floodplain soils: (1) spatial patterns of the concentrations and deposition of Cd, Cu, Pb and Zn during a single flood, which have been determined from samples collected after a high-magnitude flood event; (2) the pollution trends of the lower Rhine over the past 150 years, which were reconstructed on the basis of metal concentrations in sediments from small ponds within the floodplain area. During the flood the largest metal depositions (0.03 g/m2 Cd, 0.7 g/m2 Cu, 1.1 g/m2 Pb and 5.0 g/m2 Zn for the Rhine) occurred along the natural levees, decreasing to about one third of these values at larger distance from the river. Deposition of heavy metals occurred since the end of the nineteenth century. Periods of maximum pollution occurred in the 1930s and 1960s, when Cu, Pb and Zn concentrations were about 6–10 times as high as background values.

The resulting metal distribution in the floodplain soil profiles is illustrated by means of typical examples. Maximum metal concentrations in floodplain soils vary from 30 to 130 mg/kg for Cu, from 70 to 490 mg/kg for Pb, and from 170 to 1450 mg/kg for Zn. The lowest metal pollution is found in the distal parts of floodplain sections with low flooding frequencies, where average sedimentation rates have been less than about 5 mm/a. The largest metal accumulations occur in low-lying floodplain sections where average sedimentation rates have been more than 10 mm/a.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2000

References

Beurskens, J.E.M., Winkels, H.J., De Wolf, J. & Dekker, C.G.C., 1994. Trends of priority pollutants in the Rhine during the last fifty years. Water Science &Technology 29: 7785.CrossRefGoogle Scholar
Burrough, P.A., Van Rijn, R. & Rikken, M., 1993. Spatial data quality and error analysis issues: GIS functions and environmental modelling. Proceedings of the Second International Conference on Integrating Geographic Information Systems and Environmental Modelling (Breckenridge, Colorado September 1993): 14 pp.Google Scholar
Dominik, J., Mangini, A. & Müller, G., 1981. Determination of recent deposition rates in Lake Constance with radioisotopic methods. Sedimentology 28: 653677.CrossRefGoogle Scholar
Heijnis, H., Berger, G.W. & Eisma, D., 1987. Accumulation rates of estuarine sediment in the Dollard area; comparison of 210Pb and pollen influx methods. Netherlands Journal of Sea Research 21:295301.Google Scholar
Hoogerwerf, M.R., 1992. Onderzoek naar de relatie tussen verontreiniging van de uiterwaarden en relatieve terreinhoogten. Internal Report CSO (Den Dolder) CSO.92.030: 61 pp.Google Scholar
Kos, Th.J.M., 1994. Meetverslag zwevend stof metingen in de Maas tijdens hoogwater December 1993. Internal Document RIZA (Arnhem) 94.160X: 25 pp.Google Scholar
Leenaers, H., 1989. The dispersal of metal mining wastes in the catchment of the river Geul (Belgium - the Netherlands). Netherlands Geographical Studies 102: 1230.Google Scholar
Middelkoop, H., 1997. Embanked floodplains in the Netherlands. Geomorphological evolution over various time scales. Netherlands Geographical Studies 224: 1352.Google Scholar
Middelkoop, H. & Asselman, N.E.M., 1998. Spatial variability of floodplain sedimentation at the event scale in the Rhine-Meuse delta, the Netherlands. Earth Surface Processes and Landforms 23: 545559.Google Scholar
Middelkoop, H. & Van den Perk, M., 1998. Modelling spatial patterns of overbank sedimentation on embanked floodplains. Geografiska Annaler 80A: 95109.Google Scholar
NNI (Nederlands Normalisatie Instituut), 1981. NEN 6465 -Water and air sample preparation for sludge, water-containing sludge and air dust for the determination of elements by atomic adsorption spectrometry - Destruction with nitric acid and hydrochloric acid. NNI (Delft): 4 pp.Google Scholar
NNI (Nederlands Normalisatie Instituut), 1992a. NEN 5753 -Bepaling van de korrelgrootteverdeling met behulp van zeef en pipet (ontwerpnorm). NNI (Delft): 22 pp.Google Scholar
NNI (Nederlands Normalisatie Instituut), 1992b. NEN 5754 -Bodem-bepaling van het gehalte aan organische stof in grond volgens de gloeiverliesmethode. NNI (Delft): 4 pp.Google Scholar
Rang, M.C., Klein, C.E. & Schouten, C.J., 1987. Mapping of soil pollution by application of classical geomorphological and pedological field techniques. In: Gardiner, V. (ed.): International Geomorphology Part 1. Wiley & Sons (NewYork): 10291044 Google Scholar
Rijkswaterstaat, , 1994. Jaarboek monitoring rijkswateren 1993. Rijkswaterstaat (Den Haag): 163 pp.Google Scholar
Rikken, M.G.J. & Van Rijn, R.P.G., 1993. Soil pollution with heavy metals. An inquiry into the spatial variation, cost of mapping and risk-evaluation of copper, cadmium, lead and zinc in the flood-plains of the Meuse West of Stein, the Netherlands. Internal M.Sc. thesis, Department of Physical Geography, Utrecht University: 73 pp.Google Scholar
Van Manen, G.R., Onneweer, Y. & Berendsen, H.J.A., 1994. Inventarisatie van de sedimentatie van zand op de oeverwallen van de Waal tijdens het hoogwater van December 1993 - januari 1994. Internal Report GEOPRO (Department of Physical Geography, Utrecht University) 1994.06: 11 pp.Google Scholar
Vink, J.P.M. & Winkels, H.J., 1991. Opbouw en kwaliteit van de waterbodem van het IJsselmeer. Flevobericht 326 (Rijkswaterstaat, Directie Flevoland, Lelystad) : 112 pp.Google Scholar
Winkels, H.J. & Van Diem, A., 1991. Opbouw en kwaliteit van de waterbodem van het Ketelmeer. Flevobericht 325 (Rijkswaterstaat, Directie Flevoland, Lelystad): 98 pp.Google Scholar