Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T04:25:19.107Z Has data issue: false hasContentIssue false

Sur l’incomplétude de la série linéaire caractéristique d’une famille de courbes planes à nœuds et à cusps

Published online by Cambridge University Press:  22 January 2016

Sébastien Guffroy*
Affiliation:
U.F.R. de Mathématiques Bât. M2, Université des Sciences et Technologies de Lille, F59655 Villeneuve d’Ascq Cedex, FRANCE, guffroy@agat.univ-lille1.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Since J.Wahl ([27]), it is known that degree d plane curves having some fixed numbers of nodes and cusps as its only singularities can be represented by a scheme, let say H, which can be singular. In Wahl’s example, H is singular along a subscheme F but the induced reduced scheme Hred is smooth along F. In this work, we construct explicitly a family of plane curves with nodes and cusps which are represented by singular points of Hred.

To this end, we begin to show that the Hilbert scheme of smooth and connected space curves of degree 12 and genus 15 is irreducible and generically smooth. It follows that it is singular along a hypersurface (3.10). This example is minimal in the sense that the Hilbert scheme of smooth and connected space curves is regular in codimension 1 for d < 12 (B.2). Finally we construct our plane curves from the space curves represented by points of this hypersurface (4.7).

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2003

References

[1] Arbarello, E., Cornalba, M., Griffiths, P. et Harris, J., Geometry of Algebraic Curves, tome 1 de Grundlehren der math. Wissen. 267, Springer–Verlag, 1984.Google Scholar
[2] Bănică, C. et Forster, O., Multiplicity structures on space curves, Contemp. Math., 58 (1986), 4764.Google Scholar
[3] Bolondi, G., Irreducible families of curves with fixed cohomology, Arch. Math., 53 (1989), 300305.CrossRefGoogle Scholar
[4] d’Almeida, J., Courbes de l’espace projectif: Séries linéaires incomplétes et multisécantes, J. für Reine und Angew. Math., 370 (1986), 3051.Google Scholar
[5] Demazure, M., Surfaces de Del Pezzo, LNM 777, Springer–Verlag, 1980.Google Scholar
[6] Dolcetti, A. et Pareschi, G., On linearly normal space curves, Math. Z., 198 (1988), 7382.Google Scholar
[7] Ein, L., Hilbert scheme of smooth space curves, Ann. scient. Ec. Norm. Sup., 19 (1986(4)), 469478.Google Scholar
[8] Ellia, P., Double structure and normal bundle of space curves, J. London Math. Soc., 58 (1998(2)), 1826.Google Scholar
[9] Ellia, P. et Fiorentini, M., Défaut de postulation et singularités du schéma de Hilbert, Ann. Univ. Ferrara - Sez. VII - Sc. Mat., 30 (1984), 185198.CrossRefGoogle Scholar
[10] Ellingsrud, G., Sur les variétés de codimension 2 dans Pe à cône projetant de Cohen-Macaulay, Ann. scient. Ec. Norm. Sup., 58 (1975(2)), 1826.Google Scholar
[11] Greuel, G. et Karras, U., Families of varieties with prescribed singularities., Compo. Math., 69 (1989), 83110.Google Scholar
[12] Grothendieck, A., Schéma de Picard, Séminaire Bourbaki. fascicules 2 et 3, 1962.Google Scholar
[13] Gruson, L. et Peskine, C., Genre des courbes de l’espace projectif(II), Ann. scient. Ec. Norm. Sup., 15 (1983), 401418.Google Scholar
[14] Harbourne, B., Complete linear systems on rational surfaces, Trans. A.M.S., 289 (1985), 213226.Google Scholar
[15] Hartshorne, R., Algebraic Geometry, GTM 52, Springer-Verlag, 1977.Google Scholar
[16] Hartshorne, R., Families of Curves in ℙ3 and Zeuthen’s Problem, Memoirs of the A.M.S. No 617, 1997.Google Scholar
[17] Luengo, I., On the existence of complete families of projective plane curves, which are obstructed, J. London Math. Soc., 36 (1987(2)), 3343.Google Scholar
[18] Martin-Deschamps, M. et Perrin, D., Sur la classification des courbes gauches, Astérisque 184185. Publ. S.M.F, 1990.Google Scholar
[19] Martin-Deschamps, M. et Perrin, D., Sur les bornes du module de Rao, C.R. Acad. Sci. Paris, 137 (1993), 11591162.Google Scholar
[20] Martin-Deschamps, M. et Perrin, D., Le schéma de Hilbert des courbes gauches localement Cohen-Macaulay n’est (presque) jamais réduit, Ann. scient. Ec. Norm. Sup., 29 (1996), 757785.Google Scholar
[21] Morrison, D. R., The birational geometry of surfaces with rational double points, Math. Ann., 271 (1985), 415438.Google Scholar
[22] Mumford, D., Further Pathologies in Algebraic Geometry, Am. J. Math., 84 (1962).Google Scholar
[23] Martin-Deschamps, M. et Perrin, D., Lectures on curves on an algebraic surface, Ann. Maths. Studies 59, Princeton University Press, 1966.Google Scholar
[24] Nollet, S., Subextremal curves, Manuscripta Math., 94 (1997), 303317.Google Scholar
[25] Okonek, C., Schneider, M. et Spindler, H., Vector bundles on complex projective spaces, Progress in math., Birkhauser, 1980.Google Scholar
[26] Schlesinger, E., A speciality theorem for Cohen-Macaulay space curves, Trans. of A.M.S., 351 (1999(7)), 27312743.Google Scholar
[27] Semple, J. et Roth, L., Introduction to Algebraic Geometry, Oxford Univ. Press, 1949.Google Scholar
[28] Sernesi, E., Un esempio di curva obstruita in ℙ3, Seminario di variabili complesse, Bologna (1981), CNR, Università degli Studi di Bologna, (1982).Google Scholar
[29] Severi, F., Vorlesungen über algebraische Geometrie, Teubner, (1921).Google Scholar
[30] Wahl, J., Deformations of plane curves with nodes and cusps, Amer. J. Math., 96 (1974(4)), 529577.Google Scholar
[31] Walter, C., Some examples of obstructed curves in ℙ3 , London Math. Soc. LNS, 179 (1992), 325340.Google Scholar
[32] Zariski, O., Algebraic surfaces, Classics in Mathematics, Springer–Verlag, 1995.Google Scholar