Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T18:54:19.888Z Has data issue: false hasContentIssue false

Thermodynamics of Oxygen Chemistry on PbTiO3 and LaMnO3 (001) Surfaces

Published online by Cambridge University Press:  12 April 2011

Ghanshyam Pilania
Affiliation:
Chemical, Materials, and Biomolecular Engineering, Institute of Materials Science University of Connecticut, Storrs, CT 06269
R. Ramprasad
Affiliation:
Chemical, Materials, and Biomolecular Engineering, Institute of Materials Science University of Connecticut, Storrs, CT 06269
Get access

Abstract

We present a first principles thermodynamic study of O ad-atom and vacancy formation on the AO- and BO2-terminated (001) surfaces of the PbTiO3 (PTO) and LaMnO3 (LMO) cubic perovskites. Our results show that, owing to the highly energetically unfavorable nature of O vacancy formation on these surfaces, O vacancies appear only at high temperatures and practically irrelevant low pressures on the (T, p) surface phase diagram. In contrast, effortless formation of O ad-atoms on the surfaces is encountered at practically achievable pressures and temperatures. Above room temperature and close to atmospheric pressures, we predict clean PbO and TiO2-terminated (001) PTO surfaces as the stable surface phases while partially or fully O ad-atom covered surfaces are found to be more stable for LMO. These results are consistent with the observation that LMO is far more active towards oxidation catalysis than PTO.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Properties and Applications of Perovskite Type Oxides, ed. Tejuca, L. J. and Fierro, J. L. G. (Marcel Dekker: New York, 1993).Google Scholar
2. Pena, M. A. and Fierro, J. L. G., Chem. Rev. 101, 1981 (2001).Google Scholar
3. Kresse, G. and Furthmuller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
4. Blochl, P. E., Phys. Rev. B 50, 17953 (1994).Google Scholar
5. Martin, R., Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, New York, 2004).Google Scholar
6. Pilania, G. and Ramprasad, R., Surf. Sci. 604, 1889 (2010).Google Scholar
7. Shirane, B.G. and Repinsky, R., Acta Cryst. 9, 131 (1956).Google Scholar
8. Rodryguez-Carvajal, J., Hennion, M., Moussa, F. and Moudden, A. H., Phys. Rev. B 57, R3190 (1998).Google Scholar
9. Reuter, K. and Scheffler, M., Phys. Rev. B 65, 035406 (2002).Google Scholar
10. Reuter, K. and Scheffler, M., Phys. Rev. B 68, 045407 (2003).Google Scholar
11. Rogal, J., Reuter, K., and Scheffler, M., Phys. Rev. B 75, 205433 (2007).Google Scholar