Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T10:50:43.808Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Monodispersed Rare-earth Ion Doped CeO2 Coated on SiO2 Spheres

Published online by Cambridge University Press:  01 February 2011

Pandurangan Muralidharan
Affiliation:
dharan9@gmail.com, Korean Advanced Institute of Science and Technology (KAIST), Materials Science, 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, South Korea, Daejeon, 305-701, Korea, Republic of
Seung Hwan Jo
Affiliation:
shjo0829@kaist.ac.kr, Korea Advanced Institute of Science and Technology (KAIST), Department of Materials Science and Engineering, 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea, Republic of
Hyun Wook Lee
Affiliation:
hwlee1001@kaist.ac.kr, Korea Advanced Institute of Science and Technology (KAIST), Department of Materials Science and Engineering, 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea, Republic of
Do Kyung Kim
Affiliation:
dkkim@kaist.ac.kr, Korea Advanced Institute of Science and Technology (KAIST), Department of Materials Science and Engineering, 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea, Republic of
Get access

Abstract

Core–shell microspheres of monodispersed SiO2 coated with rare-earth ion doped CeO2 (Eu3+ Sm3+ Dy3+) were prepared through a sol-gel method and followed by heat treatment at 800 °C for 4 h. XRD patterns revealed the crystal structures of the doped CeO2 coated on amorphous SiO2 sphere as a shell subsequent to heat treatment at 800 °C. SEM and TEM analysis indicated the microstructures of the coating and uniform size distributions of microspheres. Photoluminescence studies showed that the luminescent property had significant influence depending on different dopant ions and the thickness of the shell coated on SiO2 spheres.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chang, M. Tie, S. Nanotech. 19, 075711 (2008).Google Scholar
2. Lin, C. Wang, H. Kong, D. Yu, M. Liu, X. Wang, Z. and Lin, J. Eur. J. Inorg. Chem. 18, 3667 (2006).Google Scholar
3. Lin, C. Kong, D. Liu, X. Wang, H. Yu, M. and Lin, J. Inorg. Chem. 46, 2674 (2007).Google Scholar
4. Feng, H.-J. Chen, Y. Tang, F.-Q., and Ren, J. Mat. Lett. 60, 737 (2006).Google Scholar
5. Bolchouchine, V.A. Goldburt, E.T. Levonovitch, B.N. Litchmanova, V.N. and Sochtine, N.P., J. Lumin. 87/89, 1277 (2000).Google Scholar
6. Igarashi, T. Ihara, M. Kusunoki, T. Ohno, K. Isobe, T. and Senna, M. Appl. Phys. Lett. 76, 1549 (2000).Google Scholar
7. Hong, G. Y., Yoo, K. Moon, S. J., and Yoo, J. S., J. Electrochem. Soc. 150, H67 (2003).Google Scholar
8. Liu, X. Chen, S. and Wang, X. J. Lumin. 127, 650 (2007).Google Scholar
9. Guo, H. and Qiao, Y. Appl. Surface Sci. 254 1961 (2008).Google Scholar
10. Castel, X. Guilloux-Viry, M., Perrin, A. Lesueur, J. and Lalu, F. J. Cryst. Growth 187 211 (1998).Google Scholar
11. Morshed, A.H. Moussa, M.E. Bedair, S.M. Leonard, R. Liu, S.X. and ElMasry, N. Appl. Phys. Lett. 70, 1647 (1997).Google Scholar
12. Blasse, G. and Grabmaier, B.C. Luminescent Materials, Springer, Berlin, 1994.Google Scholar
13. Guo, H. J. Solid State Chem. 180 127 (2007).Google Scholar
14. Cho, S. H., Yoo, J. S., and Lee, J. D., J. Electrochem. Soc. 147, 3143 (1998).Google Scholar