Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T15:27:28.529Z Has data issue: false hasContentIssue false

Substitutions in the Homologous Family CsPbmBi3Te5+m and Preliminary Thermoelectric Results

Published online by Cambridge University Press:  01 February 2011

Aurélie Guéguen
Affiliation:
gueguena@msu.edu, Michigan State University, 1525 Spartan Village Apt A, East Lansing, MI, 48823, United States, 517 355 3124
Eric Quarez
Affiliation:
equarez@cem.msu.edu, Michigan State University, Department of Chemistry, United States
Mercouri G. Kanatzidis
Affiliation:
kanatzidis@chemistry.msu.edu, Michigan State University, Department of Chemistry, United States
Get access

Abstract

We report analogs of the homologous family CsPbmBi3Te5+m, namely Cs0.74K0.76Bi3.5Te6, CsNa0.98Bi4.01Te7, Cs0.69Ca0.65Bi3.34Te6, Rb0.82Pb0.82Bi3.18Te6, Rb0.19K1.31Bi3.50Te6, RbSnBi3Te6, Rb0.94Ca0.94Bi3.06Te6 and RbYbBi3Te6. They all crystallize in the orthorhombic space group Cmcm and are isostructural to CsPbBi3Te6 the first member of the family except for CsNa0.98Bi4.01Te7 which is isostructural to CsPb2Bi3Te7, the second member of the family. Preliminary thermoelectric measurements on Cs0.76K0.74Bi3.5Te6 show electrical conductivity values in the range of 600-1000 S/cm. The thermopower shows n-type charge transport with room temperature values of ∼ -35 µV/K. By comparison, the electrical conductivity at room temperature of Rb0.82Pb0.82Bi3.18Te6 was ∼1400S/cm, while the thermopower was ∼ -20 µV/K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Chung, D. Y., Hogan, T., Brazis, P., Rocci-Lane, M., Kannewurf, C. R., Bastea, M., Uher, C., Kanatzidis, M. G., Science, 2000, 287, 1024.Google Scholar
[2] Hsu, K. F., Chung, D. Y., Lal, S., Kyratsi, T., Hogan, T., Kanatzidis, M. G., J. Am. Chem. Soc. 2002, 124, 2410.Google Scholar
[3] Hsu, K. F., Lal, S.., Hogan, T., Kanatzidis, M. G., Chem. Comm. 2002, 1380.Google Scholar
[4] Hsu, K. F., Chung, D. Y., Lal, S., Hogan, T., Kanatzidis, M. G., Mat. Res. Soc. Symp. Proc. 2002, 691, 269.Google Scholar
[5] Gueguen, A., Quarez, E., Kanatzidis, M. G., in preparation.Google Scholar
[6] Zhukova, T. B., Zaslavaskii, A. I., Kristallografiya, 1972, 10, 918.Google Scholar
[7] Kanatzidis, M. G., Semicond. Semimet. 2001, 69, 51100.Google Scholar
[8] Brinkmann, C., Eisenmann, B., Schäfer, H., Mat. Res. Bul. 1985, 20, 299.Google Scholar
[9] Adouby, K., Abba Toure, A., Kra, G., Olivier-Fourcade, J., Jumas, J.C., C. R. Acad. Sci. Paris, T 1, 2000, 3, 51.Google Scholar
[10] Eanes, M.E., Schimeck, G. L., Kolis, J. W., J. Chem. Crystal. 2000, 30, 223.Google Scholar
[11] Chung, D. Y., Jobic, S., Hogan, T., Kannewurf, C. R., Brec, R., Rouxel, J., Kanatzidis, M. G.,, J. Am. Chem. Soc. 1997, 119, 2505.Google Scholar
[12] Dresselhaus, M. S., Dresselhaus, G., Sin, X., Zhang, Z., Cronin, S. B., Koga, T., Ying, J. Y., Chen, G., Microscale Thermophys. Eng. 1999, 3, 89.Google Scholar
[13] Slack, G. A., New Materials and Performance Limits for Thermoelectric Cooling, in CRC Handbook of Thermoelectrics, Rowe, D.M., Ed.; CRC Press: Boca Raton, FL., 1995 p407.Google Scholar