Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T15:05:04.283Z Has data issue: false hasContentIssue false

Pulsed Laser Deposited Oxide Green Emitting Thin Film Phosphors : Optimization of Growth Conditions

Published online by Cambridge University Press:  26 February 2011

P. Thiyagarajan
Affiliation:
thiyagu@physics.iitm.ac.in, Indian Institute of Technology Madras,, Physics, Departmemt of Physics and MAterials Science Research centre, Chennai, 600 036, India
M. Kottaismay
Affiliation:
mmksamy66@yahoo.com, Indian Institute of Technology Madras, Chennai, 600 036, India
M S Ramachandra Rao
Affiliation:
msrrao@iitm.ac.in, Indian Institute of Technology Madras, Chennai, 600 036, India
Get access

Abstract

Structural and photoluminescence (PL) properties of Zn2(1-x)MnxSiO4 (1 ≤ x ≤ 5) and diffuse reflectance spectroscopy (DRS) and morphological studies of ZnGa2O4:Mn thin film green emitting phosphors grown using pulsed laser deposition (PLD) technique have been investigated. Zn2(1-x)MnxSiO4 thin films grown on Si substrate at 700°C in 300 mTorr of oxygen partial pressure, upon ex-situ annealing at higher temperatures exhibit superior PL intensity. ZnGa2O4:Mn phosphor thin films grown on quartz substrate at 650oC and in-situ annealed in 300mTorr of oxygen partial pressure show better emission intensity. For both Zn2SiO4:Mn and ZnGa2O4:Mn phosphors, luminescence can be assigned to 4T16A1 transition of Mn2+ within the 3d orbital giving rise to emission at 525 and 503 nm, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rack, P.D., Naman, A., Holloway, P.H., Sun, S.S. and Tuenge, R.T., MRS Bull. 21(3), (1996) 49.Google Scholar
2. Minami, T., Miyata, T., Takata, S., and Fukuda., I. Jpn. J. Appl. Phys. Part 2 30, (1991) L117 Google Scholar
3. Minami, T., Kuroi, Y., Miyata, T., Yamada, H., and Takata, S. J. Lum. 72–74, (1997) 997.Google Scholar
4. Shea, L.E., Datta, R. K., and Brown, J.J., Jr., J. Electrochem. Soc. 141, 2198 (1994).Google Scholar
5. Abritta, A., Blak, F. H., J. Lum. 48–49 (1991) 558.Google Scholar
6. Yu, C. T., Pang, Lin, J. Apl. Phys. 79 1991 558 Google Scholar
7. Tran, T. K., Park, W., Tomm, J. W., Wagner, B. K., Jacobsen, S. M., Summers, C. J., Yocom, P.N., McClelland, S. K., J.Appl. Phys. 78 (1995) 5691.Google Scholar
8. Hsu, K. H., Chen, K.S, Ceremics International, 25 (1999) 339.Google Scholar
9. Kim, J.S., Park, H.L., Kim, G.C., Ywang, Y. H., Soild State Communications, 126 (2003) 515.Google Scholar
10. Mishra, C., Johnson, K.H., DeBoer, B.G., Berkowitz, J.K., Olsen, J., Dale, E.A., J. Lumin. 47, (1991) 197.Google Scholar
11. Morell, A., Khiati, El.N., J. Electrochem. Soc. 140, (1993) 2019.Google Scholar
12. Barthou, C., Benoit, J., Benalloul, P., Morell, A., J. Electrochem. Soc. 141, (1994), 524.Google Scholar
13. Orgel, L.E., J. Chem. Phys. 23 (1955) 1004.Google Scholar
14. Xiong, L., Shi, J., Gu, J., Li, L., Huang, W., Gao, J., and Ruan, M., J. Phys. Chem. B 109, (2005) 731.Google Scholar
15. Lee, Y. E., Norton, D. P., Budai, J .D., Appl. Phys. Lett. 74 (1999) 3155.Google Scholar
16. Hsieh, I. J., Feng, M. S., Kuo, K. T., amd Lin, P., J. Electrochem. Soc. 141, (1994) 1618.Google Scholar