Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T13:56:32.187Z Has data issue: false hasContentIssue false

Pulsed Laser Annealing of Silicon-Germanium Films

Published online by Cambridge University Press:  11 February 2011

Sherif Sedky
Affiliation:
Physics Department, The American University in Cairo, P.O. Box 2511 Cairo, Egypt
Jeremy Schroeder
Affiliation:
Department of Materials Science & Engineering, University of California, Berkeley
Timothy Sands
Affiliation:
Department of Materials Science & Engineering, University of California, Berkeley
Roger Howe
Affiliation:
Berkeley Sensor & Actuator Center, University of California, Berkeley Department of Electrical Engineering and Computer Science, University of California, Berkeley
Tsu-Jae King
Affiliation:
Department of Electrical Engineering and Computer Science, University of California, Berkeley
Get access

Abstract

In this work, we investigate the possibility of using pulsed laser annealing to locally tailor the physical properties of Si1-xGex (18% < × < 90%) prepared by low pressure chemical vapor deposition (LPCVD) at 400°C. Films which were amorphous as deposited showed, after laser annealing, strong {111} texture and a columnar grain microstructure and an average resistivity of 0.7 mΩ.cm. AFM showed that the first few laser pulses result in a noticeable reduction in surface roughness, which is proportional to the pulse energy. However, a large number of successive pulses dramatically increases the surface roughness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tanaka, A., Mastsumoto, S., Tsukamoto, N., Itoh, S., Chiba, K., Endoh, T., Nakazato, A., Okuyama, K., Kumazawa, Y., Hijikawa, M., Gotoh, H., Tanaka, T. and Terammishi, N.,, IEEE ED, 43 (11), 1844 (1996).Google Scholar
2. Unewisse, M. H., Craige, B. I., Watson, R. J., Reinhold, O. and Liddiard, K. C., SPIE 2554 (43), 43 (1995).Google Scholar
3. Stot, A., Proc. SPIE 2935, 154 (1997).Google Scholar
4. Horner, K., and Kovacs, G., Sensors and Actuators A, 91 (3), 386–97 (2001).Google Scholar
5. Chienliu-Chang, ; Ching-Liang-Dai, ; Jenn-Yi-Chen, ; Honglin-Chen, ; Kaihsiang-Yen, ; Jing-Hung-Chiou, ; Pei-Zen-Chang, , J. of the Chinese Instit. of Engineers. 23 (6), 781–6 (2000).Google Scholar
6. Lund, J., Jahnes, C., Deligianni, H., Paivikki, L., Cotte, J., Andricacos, P., Seeger, D. and Margerlein, J., Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, June 2–6, 2002, 3841.Google Scholar
7. Franke, A. E., Bilic, D., Chang, D., Jones, P. T., King, T. J., Howe, R. T. and Johnson, G. C., Proceedings of the 1999 International Conference on Solid-State Sensors and Actuators, Transducers'99 (Sendai, Japan), 530533, (1999).Google Scholar
8. Sedky, S., Witvrouw, A. and Baert, K., Sensors and Actuators A, 97–98C, 496504, (2002).Google Scholar
9. Bhave, S., Bircumshaw, B., Low, W., Kim, Y., Pisano, A., king, T. and Howe, R., Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, June 2–6, 2002, 3437.Google Scholar
10. Lee, S. and Joo, S., IEEE EDL 17, 160162 (1996).Google Scholar
11. Toet, D., Smith, P. and Sigmon, T., J. of Appl. Phys., 85 (11), June 1999, 7914–18.Google Scholar
12. Murley, D., Young, N., Trainor, M. and McClulloch, D., IEEE ED 48 (6), 11451151, (2001).Google Scholar
13. Andra, G., Bergmann, J., Falk, F., Ose, E., Thin Solid Films, 337, 98100 (1999).Google Scholar
14. Sedky, S., Fiorini, P., Caymax, M., Loreti, S., Baert, K., Hermans, L. and Mertens, R., J. of MicroElectroMechanical Systems 7(4), 365372, (1998).Google Scholar
15. King, Tsu-Jae, Howe, Roger T. and Sedky, Sherif, Liu, Gang, Lin, Blake C. -Y., Wasilik, Matthew, Duenn, Christoph,, IEDM 2002 (To be published).Google Scholar